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Abstract14

Owicki-Gries reasoning for concurrent programs uses Hoare logic together with an interference15

freedom rule for concurrency. In this paper, we develop a new proof calculus for the C11 RAR16

memory model (a fragment of C11 with both relaxed and release-acquire accesses) that allows all17

Owicki-Gries proof rules for compound statements, including non-interference, to remain unchanged.18

Our proof method features novel assertions specifying thread-specific views on the state of programs.19

This is combined with a set of Hoare logic rules that describe how these assertions are affected by20

atomic program steps. We demonstrate the utility of our proof calculus by verifying a number of21

standard C11 litmus tests and Peterson’s algorithm adapted for C11. Our proof calculus and its22

application to program verification have been fully mechanised in the theorem prover Isabelle.23
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1 Introduction27

In 1976, Susan Owicki and David Gries proposed an extension of Hoare’s axiomatic reasoning28

technique [15] to concurrent programs [27]. Their proof calculus allows one to reason about29

concurrent programs with shared variables via a number of proof rules, including the rules30

for sequential programs as introduced by Hoare plus an additional proof rule for concurrent31

composition. This composition rule basically allows for the conjunction of pre- and post-32

conditions of the process’ individual proofs, given that their proof outlines are interference33

free. Interference freedom requires that an assertion in the proof of one process cannot34

be invalidated by a statement in another process, when executed under the statement’s35

precondition.36

Today, concurrent programs are run on multi-core processors. Multi-core processors37

come with weak memory models specifying the execution behaviour of concurrent programs.38

Reasoning consequently needs to be adapted to the memory model under consideration.39

Owicki-Gries reasoning is, however, fixed to the memory model of sequential consistency40

(SC) [23], and is unsound for weak memory models. Recent research has thus worked towards41

new sound proof calculi for concurrent programs. Most often, such approaches involve42

concurrent separation logics (e.g., GPS and RSL [34, 16]). These techniques constitute a43

radical departure from the (relatively) small and easy proof calculus of Owicki and Gries,44

further extending already complex logics. A proposal for a (rely-guarantee variant of) the45
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0:2 Owicki-Gries Reasoning for C11 RAR

Owicki-Gries proof system has been made by Lahav and Vafeiadis [22], however, requiring a46

strenghtened non-interference check.47

In this paper, we develop a proof method based on the Owicki-Gries proof calculus,48

keeping all of the original proof rules including the non-interference check unchanged. Our49

technique introduces a set of basic axioms to cope with memory accesses (reads, writes,50

read-modify-writes) and simple assertions that describe the current configuration of the weak51

memory state. Our proof calculus targets the weak memory model of the C11 programming52

language [9]. Here, we deal with the release-acquire-relaxed (RAR) fragment of C11 (thereby53

going further than prior work on Owicki-Gries reasoning for C11 [22]).54

The key idea of our approach is the usage of novel assertions, which allow to specify55

thread-specific views on shared variables. We also include a specific assertion containing56

a modality for release-acquire (RA) synchronisation, capturing particularities of C11 RA57

message passing. The use of non-standard assertions as a consequence necessitates the58

introduction of new rules of assignment, formalising the effect of assignments on assertions.59

We build our proof calculus on top of an operational semantics for C11 RAR. The60

semantics is a mixture of the operational semantics proposed by Doherty et al. [12] (for RAR)61

and Kaiser et al.’s semantics [16] for RA plus non-atomics. Correctness of this novel proposal62

is shown by proving it to coincide with the semantics in [12] which in turn has been proven63

to coincide with the standard axiomatic semantics of Batty et al. [9]. We have formalised64

our semantics within the theorem prover Isabelle [28] and mechanically proved soundness of65

all of our new rules for C11 assertions. Moreover, we provide mechanical proofs1 of several66

litmus tests from the literature (message passing, load buffering, read-read coherence) as67

well as a version of Peterson’s algorithm adapted for C11 memory [12, 36].68

Overview. The paper is organised as follows. In the next section we start with an example69

explaining the behaviour of concurrent programs on C11, motivating our novel assertions.70

Section 3 defines the syntax of C11 RAR programs and Section 4 its semantics. We present71

the proof calculus and its novel assertions in Section 5 via proofs of correctness for some72

standard litmus tests, and a case study of Peterson’s algorithm in Section 6. Section 773

describes our Isabelle mechanisation, Section 8 discusses related work and the last section74

concludes.75

2 Deductive Reasoning for Weak Memory76

In this section, we illustrate the basic principles of C11 synchronisation and our verification77

method by considering the message-passing example (Figures 1 and 2). The two programs78

are almost identical and consist of two threads executing in parallel, accessing shared variables.79

The assertions in curly brackets at the end specify the programs’ postconditions.80

The programs comprise two shared variables: d (that stores some data) and f (that stores81

a flag). In both programs, both d and f are initially 0. thread 1 updates d to 5, then updates82

f to 1. Thread 2 waits for f to be set to 1, then reads from d. Under sequential consistency,83

one would expect that the final value of r2 is 5, since the loop in thread 2 only terminates84

after f has been updated to 1 in thread 1, which in turn happens after d has been set to 5.85

However, the C11 semantics allows the behaviour in Figure 2, where thread 2 may read a86

stale value of d, and hence only the weaker postcondition r2 = 0 ∨ r2 = 5 holds. To regain87

the expected behaviour, one must introduce additional synchronisation in the program. In88

1 The Isabelle files may be downloaded from: https://www.dropbox.com/sh/4yr2w7792qwyw09/
AACsWUXtZbK3PvyfJkqqjyDYa within the file ECOOP-2020-Isabelle.zip.

https://www.dropbox.com/sh/4yr2w7792qwyw09/AACsWUXtZbK3PvyfJkqqjyDYa
https://www.dropbox.com/sh/4yr2w7792qwyw09/AACsWUXtZbK3PvyfJkqqjyDYa
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Init: d := 0; f := 0;
Thread 1 Thread 2
d := 5; do r1←A f

f :=R 1; until r1 = 1;
r2← d;

{r2 = 5}

Figure 1 Message-passing litmus test

Init: d := 0; f := 0;
Thread 1 Thread 2
d := 5; do r1← f

f := 1; until r1 = 1;
r2← d;

{r2 = 0 ∨ r2 = 5}

Figure 2 Unsynchronised message passing

particular, the write to f by thread 1 must be a releasing write (i.e., f :=R 1) and the read89

of f in thread 2 must be an acquiring read (i.e., r1 ←A f) as in Figure 1.90

In sequential consistency all threads have a single common view of the shared state,91

namely all threads see the latest write that occurs for each variable. When a new write is92

executed, the views of all threads are updated so that they see this write. In contrast, each93

thread in C11 programs has its own view of each variable, which is affected by synchronisation94

annotations. Thus, for the program in Figure 2, after initialisation, all threads see the initial95

writes (i.e., d = 0, f = 0). The assignments in thread 1 only change thread 1’s view, and96

leave thread 2’s view unchanged. Thus, after execution of f := 1, thread 2 has access to two97

values for d (i.e., d ∈ {0, 5}) and f (i.e., f ∈ {0, 1}). Even if thread 2 reads f = 1, its view of98

d remains unchanged and it continues to have access to both values of d.99

The program in Figure 1 has a similar semantics for initialisation and execution of thread 1,100

i.e., its execution does not affect the view of thread 2. However, due to the release-acquire101

synchronisation on f (notation R and A), after thread 2 reads f = 1, its view for d will be102

updated so that the stale value d = 0 is no longer available for it to read. One way to explain103

this behaviour is by thinking of thread 1 as passing its knowledge of the write to d to thread104

2 via the variable f , which is synchronised using the release-acquire annotations.105

This intuition is captured formally using a semantics based on timestamps [16, 13, 17, 29],106

which enables one to encode each thread’s view and define how these views are updated. In107

this paper, we characterise the release-acquire-relaxed subset of C11 [12] (C11 RAR) using108

timestamps, which has a restriction prohibiting the so-called load-buffering litmus test [20].109

The main contribution of our paper is an assertion language that enables one to reason110

about thread views in a Hoare-style proof calculus, resulting in the proof outline given in111

Figure 3. As already noted, the key advantage of these assertions is the fact that standard112

rules of Hoare and Owicki-Gries logic remain unchanged. For message passing, we require113

three main types of assertions (see Section 5):114

Possible value. A possible value assertion (denoted x ≈t n) states that thread t can read115

value n of global variable x, i.e., there is a write to x with value n beyond or including116

the viewfront2 of thread t. Note that there may be more than one such write, and hence117

there may be several possible values for a given variable. Moreover, the last write to each118

variable is always viewable as a possible value.119

Definite value. A definite value assertion (denoted x =t n) states that thread t’s viewfront120

is up-to-date with the writes to x (i.e., there is a single write to x beyond or including121

the viewfront of thread t), and this write updates x’s value to n. Thus, t definitely knows122

the variable x to have value n.123

2 We borrow the term viewfront from Popkadaev et al. [29].

AAA
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Init: d := 0; f := 0;
{f =1 0 ∧ f =2 0 ∧ d =1 0 ∧ d =2 0}

Thread 1 Thread 2
{f 6≈2 1 ∧ d =1 0} {[f = 1](d =2 5)}
1 : d := 5; 3 : do r1←A f until r1 = 1;
{f 6≈2 1 ∧ d =1 5} {d =2 5}
2 : f :=R 1; 4 : r2← d;
{true} {r2 = 5}

{r2 = 5}

Figure 3 Proof outline for message passing

Conditional value. A conditional value assertion (denoted [x = n](y =t m)) captures the124

message passing idiom for variable y via variable x. It guarantees that when thread t125

reads x to be n via an acquiring read, a release-acquire synchronisation is induced and126

thereby t learns the definite value of y to be m. In particular, after reading x = n via127

an acquiring read, the viewfront for t is updated so that the only write to y beyond or128

including this viewfront is a write with value m.129

For the example in Figure 3, after initialisation, both threads 1 and 2 have definite value 0130

for both d and f . The precondition of d := 5 states that thread 2 cannot possibly observe 1131

for f (i.e., f ≈2 1) and thread 1 definitely observes 0 for d (i.e., d =1 0). These assertions can132

be proven locally correct and interference free since thread 2 neither modifies d nor f . The133

precondition of f :=R 1 is similar but with d =1 5 in place of d =1 0. The precondition of the134

until loop in thread 2 contains a conditional value assertion, which ensures that if thread 2135

reads f = 1 then it will definitely read d = 5. This conditional value assertion enables one to136

establish local correctness of the precondition (i.e., d =2 5) of the statement r2← d, which137

leads to the postcondition of the program. Each of the assertions in thread 2 can be proven138

to be interference free against thread 1.139

3 Program Syntax140

We start by defining the syntax of concurrent programs, starting with the structure of141

sequential programs (single threads). A thread may use global shared variables (from VarG)142

and local registers (from VarL). We let Var = VarG ∪ VarL and assume VarG ∩ VarL = ∅.143

Global variables can be accessed in three different synchronisation modes: acquire (A, for144

reads), release (R, for writes) and relaxed (no annotation). The annotation RA is employed145

for update operations, which read and write to a shared variable in a single atomic step. We146

use x, y, z to range over global variables and r1, r2, . . . to range over local variables. We147

assume that 	 is a unary operator (e.g., ¬), ⊕ is a binary operator (e.g., ∧, +, =) and n148

is a value (of type Val). Expressions may only involve local variables. For a treatment of149

expressions with global variables in the semantics see [12]. The syntax of sequential programs,150

Com, is given by the following grammar (with r ∈ VarL, x ∈ VarG):151

ExpL ::= Val | r | 	ExpL | ExpL ⊕ ExpL
ACom ::= skip | x.swap(n)RA | r := ExpL | x :=[R] ExpL | r ←[A] x

Com ::= ACom | Com; Com | if B then Com else Com | while B do Com

152

where we assume B to be an expression of type ExpL that evaluates to a boolean. The153

statement x.swap(n)RA atomically reads the variable x (using an acquiring read) and updates154
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x to value n (using a releasing write) in a single atomic step. Its execution therefore gives155

rise to an atomic read-modify-write update event. We have not included a CAS operation156

here; it could similarly be implemented by an update event (see e.g. [35]).157

The notation [X] denotes that the annotation X is optional, where X ∈ {A,R}, enabling158

one to distinguish relaxed, acquiring and releasing accesses. Loops will be used in other159

forms, like do-until or do-while, which are straightforward to define in terms of the command160

syntax above.161

As is standard in Owicki-Gries proofs, we make use of auxiliary variables, which are162

variables that do not affect the meaning of a program, but appear in proof assertions. We163

require that each auxiliary variable is local to the thread in which it occurs. Auxiliary164

variables may only occur in assignments, not in conditional statements, and only in the form165

a := E, where E ∈ ExpL and a is an auxiliary variable3. Finally, we require that writes166

to auxiliary variables occur atomically in conjunction with another (non-auxiliary) atomic167

program step. Such atomic operations are written as 〈A, a := E〉, where A ∈ ACom. This168

is more of a technical requirement which could also easily be relaxed. It guarantees that169

the programs without and with auxiliary variables have the same number of transitions (no170

stuttering steps).171

For simplicity, we assume concurrency at the top level only. We let Tid be the set of172

all thread identifiers and use a function Prog : Tid → Com to model a program comprising173

multiple threads. In examples, we typically write concurrent programs as C1|| . . . ||Cn, where174

Ci ∈ Com. We further assume some initialisation of variables. The structure of our programs175

thus is Init;
(
C1|| . . . ||Cn

)
.176

4 Semantics177

The operational semantics for this language is defined in two parts. The program semantics178

fixes the steps that the concurrent program can take. This gives rise to transitions (P, lst) −a→t179

(P ′, lst′) of a thread t where P and P ′ are programs, lst and lst′ is the state of local variables180

and a is an action (possibly the silent action τ , see below). The program semantics is181

combined with a memory semantics which reflects the C11 state (denoted by σ), and in182

particular the write actions from which a read action can read.183

We start by fixing the actions, where x ∈ VarG and m,n ∈ Val:184

Act = {rd(x, n), rdA(x, n), wr(x, n), wrR(x, n), updRA(x, n,m)}185

containing actions for (releasing) reads, (acquiring) writes and updates (reading value n and186

writing m). We furthermore employ a silent τ action and let Actτ = Act∪{τ}. For an action187

a ∈ Act, we let var(a) ∈ VarG be the variable read (or written to), rdval(a) ∈ Val be the188

value read and wrval(a) ∈ Val be the value written. We let U denote the update actions, and189

distinguish the sets WR ⊇ U (write release), RA ⊇ U (read acquire), WX (write relaxed) and190

RX (read relaxed). Finally, we define R = RA ∪ RX (all reads) and W = WR ∪WX (all writes).191

Typically, we refer to the elements of W as writes, but note that this set also includes update192

actions.193

3 The locality requirement is the only difference to “normal” Owicki-Gries auxiliary variables.

AAA
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r ∈ VarL n = JEKls

(r := E, ls) −τ→ (skip, ls[r := n])
x ∈ VarG a = wr[R](x, JEKls)

(x :=[R] E, ls) −a→ (skip, ls)

a = rd[A](x, n) n ∈ Val
(r ←[A] x, ls) −a→ (skip, ls[r := n])

a = updRA(x,m, n) m ∈ Val
(x.swap(n)RA, ls) −a→ (skip, ls)

(C1, ls) −a→ (C′
1, ls

′)
(C1;C2, ls) −a→ (C′

1;C2, ls′) (skip;C2, ls) −τ→ (C2, ls)

JBKls

(if B then C1 else C2, ls) −τ→ (C1, ls)
¬JBKls

(if B then C1 else C2, ls) −τ→ (C2, ls)

JBKls

(while B do C, ls) −τ→ (C;while B do C, ls)
¬JBKls

(while B do C, ls) −τ→ (skip, ls)

Aux

(A, ls) −a→ (skip, ls′)
(a := E, ls′) −τ→ (skip, ls′′)

(〈A; a := E〉, ls) −a→ (skip, ls′′)
Prog

(P (t), lst(t)) −a→ (C, ls) a ∈ Actτ
(P, lst) −a→t (P [t := C], lst[t := ls])

Figure 4 Program semantics

4.1 Program Semantics194

In the program semantics, we assume a function lst ∈ Tid → (VarL 7→ Val), which returns195

the local state for the given thread. We assume that the local variables of threads are disjoint,196

i.e., if t 6= t′, then dom(lst(t)) ∩ dom(lst(t′)) = ∅. For an expression E over local variables,197

we write JEKls for the value of E in local state ls; we write ls[r := n] to state that ls remains198

unchanged except for the value of local variable r which becomes n.199

Figure 4 gives the transition rules of the program semantics. The last rule, Prog, lifts200

the transitions of threads to a transition for a concurrent program. The other rules concern201

the sequential part of the language. The rules in a sense ignore the fact that the language202

allows for global variables; the program semantics just details the values of local variables in203

component ls. When global variables are read, the program semantics allows for all possible204

values to be read. This is combined with the memory semantics (formalised by a
t) as205

follows:206

(P, lst) −τ→t (P ′, lst′)
(P, lst, σ) =⇒ (P ′, lst′, σ)

(P, lst) −a→t (P ′, lst′) σ a
t σ
′

(P, lst, σ) =⇒ (P ′, lst′, σ′)
207

208

The transitions defined by σ a
t σ
′ ensure that read actions only return a value allowed209

by the C11 semantics and are defined in Section 4.2. The rules for all imperative program210

constructs (sequential composition, if and while) are standard.211

4.2 Memory Semantics212

Next, we detail the memory semantics, which is equivalent to an earlier operational reformu-213

lation [12] of the RAR fragment from [20].214

C11 State. Table 1 summarises the components of a C11 state. Each global write is215

represented by a pair (a, q) ∈W × Q, where a is a write action, and q is a rational number216
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Table 1 Components of a C11 state

Component Informal meaning Initial value
writes ⊆W × Q The writes which have happened so far writesInit

tviewt ∈ VarG → writes The view of a thread t tviewInit

mvieww ∈ VarG → writes The view of a thread when writing w mviewInit

covered ⊆ writes The covered writes ∅

that we use as a timestamp (c.f., [16, 13, 29]. The timestamps totally order the writes to217

each variable; the ordering induced by timestamps is also referred to as the modification218

order [20, 12] or coherence order [3]. For each write w = (a, q), we denote w’s timestamp219

by tst(w) = q. We also lift the functions var and wrval to timestamped writes, e.g.,220

var((a, q)) = var(a). The set of all writes that have occurred in the execution thus far is221

recorded in the state component writes ⊆W × Q.222

As described in Section 2, each state must record the writes that are observable to each223

read. To achieve this, we use two families of functions from global variables to writes, both224

of which record the viewfronts (c.f., [29, 17]).225

A function tviewt that returns the viewfront of thread t. The thread t can read from any226

write to variable x whose timestamp is not earlier than tviewt(x). Accordingly, we define,227

for each state σ, thread t and global variable x, the set of observable writes:228

σ.OW(t, x) = {(a, q) ∈ σ.writes | var(a) = x ∧ tst(σ.tviewt(x)) ≤ q} (1)229
230

A function mvieww that records the viewfront of write w, which is set to be the viewfront231

of the thread that executed w at the time of w’s execution. We use mvieww to compute232

a new value for tviewt if a thread t synchronizes with w, i.e., if w ∈ WR and another233

thread executes an e ∈ RA that reads from w.234

Finally, our semantics maintains a variable covered ⊆ writes. In C11 RAR, each update235

action occurs in modification order immediately after the write that it reads from [12]. This236

property constitutes the atomicity of updates. In order to preserve this property, we must237

prevent any newer write from intervening between any update and the write that it reads238

from. As we explain below, covered writes are those that are immediately prior to an update239

in modification order, and new write actions never interact with a covered write.240

Initialisation. Table 1 also states how these components are initialised by Init. If VarG =241

{x1, . . . , xn}, VarL = {r1, . . . , rm} and k1, . . . , kn, l1, . . . , lm ∈ Val, we assume Init = x1 :=242

k1; . . . , xn := kn; [r1 := l1; ] . . . [rm := lm; ], where we use the notation [ri := li; ] to mean243

that the assignment ri := li may optionally appear in Init. Thus each shared variable is244

initialised exactly once and each local variable is initialised at most once. The initial values245

of the state components are then as follows, where we assume that 0 is the initial timestamp.246

writesInit = {(wr(x1, k1), 0), . . . , (wr(xn, kn), 0)}247

tviewInit(xi) = (wr(xi, ki), 0) for each thread xi ∈ VarG248

mviewInit = tviewInit249
250

The local state component of each thread must also be compatible with Init, i.e., for each t251

if ri ∈ dom(lst(t)) we have that (lst(t))(ri) = li provided ri := li appears in Init.252

We let lstInit be the local state compatible with Init, let σInit denote the initial state253

defined by Init, and define ΓInit = (lstInit, σInit).254

AAA
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Read

a ∈ {rd(x, n), rdA(x, n)} (w, q) ∈ σ.OW(t, x) wrval(w) = n

tview′
t =

{
σ.tviewt ⊗ σ.mview(w,q) if (w, a) ∈WR × RA

σ.tviewt[x := (w, q)] otherwise

σ a
t σ[tviewt := tview′

t]

Write

a ∈ {wr(x, n), wrR(x, n)} (w, q) ∈ σ.OW(t, x) \ σ.covered σ.fresh(q, q′)
writes′ = σ.writes ∪ {(a, q′)} tview′

t = σ.tviewt[x := (a, q′)]
σ a

t σ[tviewt := tview′
t,mview(a,q′) := tview′

t,writes := writes′]

Update

a = updRA(x,m, n) (w, q) ∈ σ.OW(t, x) \ σ.covered
wrval(w) = m σ.fresh(q, q′)

writes′ = σ.writes ∪ {(a, q′)} covered ′ = σ.covered ∪ {(w, q)}

tview′
t =

{
σ.tviewt[x := (a, q′)]⊗ σ.mview(w,q) if w ∈WR

σ.tviewt[x := (a, q′)] otherwise

σ a
t σ[tviewt := tview′

t,mview(a,q′) := tview′
t,

writes := writes′, covered := covered ′]

Figure 5 Transition relation of the memory semantics

Transition semantics. The transition relation of our semantics for global reads and writes255

is given in Figure 5. Each transition σ a
t σ
′ is labelled by an action a and thread t. The256

premise of each rule must identify the write w that the action interacts with. This is made257

more precise below.258

Read transition by thread t. Here we assume that259

a is either a relaxed or acquiring read to variable x,260

w is a write to x that t can observe (i.e., (w, q) ∈ σ.OW(t, x)), and261

the value read by a is the value written by w.262

Each read causes the viewfront of t to be updated. This is computed as follows. If the read263

synchronises with the write, then the thread’s new view will be a combination of its existing264

view, and the view of that write. In particular, for each variable x the new view of x will265

be the later of either tviewt(x) or mvieww(x), in timestamp order. To express this, we use266

an operation that combines two views v1 and v2, by constructing a new view that takes the267

later of the writes at each variable:268

(v1 ⊗ v2)(x) =
{
v1(x) if tst(v2(x)) ≤ tst(v1(x))
v2(x) otherwise

269

270

If w and a do not synchronise, then tviewt is simply updated to include the new write.271

For illustration, consider the picture in Figure 6. The x-axis depicts the timestamps of272

the writes, the y-axis the variables x, y and z, which we assume are initialised by writes x0,273

y0 and z0, respectively. The orange line shows the view of a thread, say t1, and the blue line274

depicts the view of another thread that executes w = (wrR(y, 42), 3). If thread t1 performs275

an acquiring read of y and reads from w (i.e., it performs a sychronising read), thread t1’s276

view changes to the diagram on the right, whereby its current viewfront is combined with277

the viewfront of w.278

Write transition by thread t. A write transition must identify the write (w, q) after279

which a occurs. This w must be observable and must not be covered — the second condition280
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(wrR(y, 42), 3)

(wr(x, 5), 1)

Figure 6 Illustration of views and view updates: pre-state (left) and post-state (right)

is required to preserve the read-modify-write atomicity of updates. We must choose a fresh281

timestamp q′ ∈ Q for a, which is formalised by fresh(q, q′):282

σ.fresh(q, q′) = q < q′ ∧ ∀w′ ∈ σ.writes. q < tst(w′)⇒ q′ < tst(w′)283

The predicate fresh(q, q′) ensures that q′ is a new timestamp for the variable x, such that284

(a, q′) occurs immediately after (w, q). The new write is added to the set writes. We update285

tviewt to include the new write, which means t can no longer observe any writes prior to (a, q′).286

Finally, we set the viewfront of (a, q′) to be the new viewfront of t, i.e., mview(a,q′) := tview′t.287

Now, if some other thread synchronises with this new write in some later transition, that288

thread’s view will become at least as recent as t’s view at this transition.289

Update transition by thread t. These transitions are best understood as a combination290

of the read and write transitions. As with a write transition, we must choose a valid fresh291

q′, and the state components writes and mview are updated in the same way. As discussed292

earlier, in Update transitions it is necessary to record that the write that the update interacts293

with is now covered, which is achieved by adding that write to covered. Finally, we must294

compute a new thread view, which is similar to a Read transition, except that the thread’s295

new view always includes the new write introduced by the update.296

4.3 Relationship to the Axiomatic Semantics297

We prove that the timestamp-based semantics presented here is equivalent to an earlier298

operational semantics [12] that is already known to be equivalent to the C11 RAR fragment.299

Here, we just roughly sketch how this proof proceeds, the appendix contains more details.300

The semantics in [12] describes C11 states in the form E = (X, sb, rf,mo), where X is301

a set of read and write events (roughly equivalent to actions) and sb, rf and mo describe302

the sequenced-before and reads-from relation as well as the modification order of the C11303

axiomatic semantics. A number of further relations are derived from these, in particular the304

extended coherence order eco and the happens-before order hb. The proof of equivalence of305

the semantics shows the two semantics to simulate each other. For this, we need to define a306

correspondence between C11 states of form E and of form σ such that: (1) For σ.writes, we307

take X ∩W; (2) For σ.covered, we take the writes w in X ∩W such that there is an update u308

with (w, u) ∈ rf; and (3) For mview and tview, we use a downward closure operator, cclose,309

which for a given set of events S determines the set of events prior to S in the relation eco?◦hb?.310

Then σ.tviewt = maxmo(X.cclose(Xt)) and σ.mvieww = maxmo(X.cclose({w})), where311

maxmo selects writes being maximal wrt. mo and Xt are all actions of t in X. In all these312

cases, timestamps for writes have to be selected consistent with mo.313

Given such a correspondence, the proof proceeds by showing this correspondence is314

preserved by the read, write and update transitions.315

AAA
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4.4 Well Formedness316

Our proofs in subsequent sections require that the state under consideration is well-formed.317

This is formalised by predicate wfs over a C11 state σ, where318

wfs(σ) ⇐⇒ ran((
⋃
t σ.tviewt) ∪ (

⋃
w σ.mvieww)) ⊆ σ.writes ∧319

finite(σ.writes) ∧ σ.covered ⊆ σ.writes ∧320

(∀w. w ∈ σ.writes ⇒ σ.mvieww(var(w)) = w)321
322

The first conjunct ensures that each viewable write is in σ.writes. The second conjunct323

ensures there are only a finite number of writes, and the third ensures that every covered324

write is an actual write. The final conjunct ensures that for each write in σ.writes, the325

viewfront of w for var(w) is w itself.326

Well-formedness is invariant for any program, i.e., every initialisation establishes well-327

formedness and every program transition preserves well-formedness.328

I Lemma 1. For any program C constructed using the syntax described in Section 3, wfs(σ)329

is invariant.330

Proof. In Isabelle. We show that every initialisation establishes wfs(σ). Furthermore, if331

wfs(σ) and σ a
t σ
′, then wfs(σ′) for any action a and thread t. J332

5 Hoare Logic and Owicki-Gries Reasoning for C11333

In this section, we present a Hoare logic [15] for C11 RAR that enables Owicki-Gries334

reasoning [27]. For compound statements (including concurrent composition) we use the335

standard rules of Hoare logic as well as the standard interference freedom proof obligations336

described by Owicki and Gries. Our contribution is a novel set of high-level predicates337

that describe the observations of each thread for a C11 state, together with a set of basic338

axioms that describe how these predicates interact with read, write and update transitions.339

Soundness of these axioms has been checked using Isabelle.340

In Section 5.1, we link our operational semantics to the proof outlines of Hoare logic341

and Owicki-Gries’ notion of interference freedom. Section 5.2 provides an overview of our342

assertion language and briefly discusses the main categories of assertions, i.e., assertions343

describing observability, ordering and occurrences of writes. We present the basic axioms344

in stages, using specific litmus tests (in Sections 5.3, 5.4, 5.5) to motivate each group of345

assertions. The proof outlines of all litmus tests have been verified using Isabelle.346

5.1 Soundness and Classical Verification Rules347

We first define the meaning of a Hoare triple under partial correctness and present the348

classical proofs rules for compound statements. Unlike Hoare logic, where a state is modelled349

by a mapping from variables to values, as we have seen in Section 4.1, states of a C11350

program contain two components: a local state lst and a global state σ. We let ΣG351

be the set of all possible global state configurations (as described in Table 1) and let352

ΣC11 = (VarL → Val)× ΣG be the set of all possible C11 states. Predicates over ΣC11 are353

therefore of type ΣC11 → B. This leads to the following definition of a Hoare triple, which we354

note is the same as the standard definition — the only difference is that the state component355

is of type ΣC11.356
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Skip
{p}skip{p}

Seq
{p}C1{r} {r}C2{q}

{p}C1;C2{q}

If
{p ∧B}C1{q} {p ∧ ¬B}C2{q}
{p}if B then C1 else C2{q}

While
{p ∧B}C{p}

{p}while B do C{p ∧ ¬B}

Until
{p}C{r} {r}while ¬B do C{r ∧B}

{p}do C untilB{r ∧B}
Cons

p⇒ p′ {p′}C{q′} q′ ⇒ q

{p}C{q}

Figure 7 Classical proof rules for sequential programs

I Definition 2. Suppose p, q ∈ ΣC11 → B, P ∈ Prog and E = λt : Tid. skip. The semantics357

of a Hoare triple under partial correctness is given by:358

{p}Init{q} = q(ΓInit)359

{p}P{q} = ∀lst, σ, lst′, σ′. p(lst, σ) ∧ (P, lst, σ) =⇒∗ (E, lst′, σ′)⇒ q(lst′, σ′)360

{p}Init;P{q} = ∃r. {p}Init{r} ∧ {r}P{q}361
362

The classical rules of sequential Hoare logic for compound (i.e., non-atomic) statements are363

given in Figure 7. Soundness of these proof rules (with respect to Definition 2) holds for364

exactly the same reason as soundness of Hoare logic [15].365

The sequential part is combined with the Owicki-Gries rule for concurrent composition366

in the standard way [27, 7]. First, we construct proof outlines for every component of the367

concurrent program in isolation. A proof outline inserts assertions (in { } brackets) into a368

program. In a so-called standard proof outline every statement R of the program has exactly369

one assertion before it. This assertion is its precondition, pre(R). Next, all assertions in one370

component have to be checked for non-interference with all statements in other components.371

I Definition 3. A statement R ∈ ACom with precondition pre(R) (in the standard proof372

outline) does not interfere with an assertion p if373

{p ∧ pre(R)} R {p} .374

Interference freedom guarantees that proof outlines in each thread are stable under the375

execution of other threads. This is formalised in the Owicki-Gries proof rule for concurrent376

composition:377

Parallel
Proof outlines {pi}Ci{qi} are interference free

{
∧n
i=1 pi} C1|| . . . ||Cn {

∧n
i=1 qi}

378

379

We say a proof outline is valid if it is both sequentially valid (or locally correct) and380

interference free.381

Finally, there is a standard proof rule for auxiliary variables in parallel programs [7]. Let382

V be a set of auxiliary variables of a parallel program P and q be a predicate that does not383

mention auxiliary variables. Then we can prove that a Hoare triple holds for a program384

extended with auxiliary variables and transfer this proof to the original program:385

AuxVar
{true} Init;P {q}
{true} Init0;P0 {q}

provided vars(q) ∩ V = ∅386

where Init0 is obtained from Init by removing all auxiliary assignments and P0 is obtained387

by replacing all statements 〈A, a := E〉 in P (for a ∈ V ) by A.388

AAA
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5.2 An Assertion Language389

We studied a number of well-known litmus tests and examples and discovered three main390

categories of assertions required for specification and verification of a wide range of problems.391

These three main categories are dealing with (values of) writes to variables and the order in392

which they occur.393

Observability. Observability assertions describe if or when a thread may observe or394

has encountered a write to a variable. As described in Section 2, these assertions are395

thread-specific and deal with the thread’s view. We repeat the main ideas here to simplify396

comparison with the other types of assertions. The main observability assertions are as397

follows:398

1. Possible observation which is denoted by x ≈t u means that thread t may observe399

value u for x. The formal definition and an example motivating this assertion is given400

in Section 5.4.401

2. Definite observation which is denoted by x =t u means that thread t must observe402

the value u for x. The formal definition and an example motivating this assertion is403

given in Section 5.3.404

3. Conditional observation which is denoted by [x = u](y =t v) means that if thread405

t synchronises with a write to variable x with value u, it must observe value v for y.406

The formal definition and an example motivating this assertion is given in Section 5.4.407

4. Encountered value which is denoted by x enc= t v means that thread t has encountered408

(had the opportunity to observe) a write to variable x with value v. The formal definition409

and three examples motivating this assertion are given in Section 5.5.410

Ordering. Ordering assertions specify the order of values written to a variable by411

different writes. These assertions are thread-independent and specify an order over the412

timestamp of various writes with specific values:413

1. Possible value order which is denoted by m ≺x n means that there exists two writes414

w and w′ to variable x where the timestamp of w′ is larger than the timestamp of w415

and the value of w and w′ is m and n, respectively.416

2. Definite value order which is denoted by m ≺≺x n means that for all writes w and417

w′ to x where the value of w is m and the value of w′ is n, the timestamp of w′ is418

larger than the timestamp of w and m ≺x n.419

Both the above assertions are formally defined in Section 5.5 and examples showing their420

usage are provided.421

Occurrence. Occurrence assertions specify the occurrence of a write with a specific422

value to a variable (regardless of observability). Similar to the previous category, these423

assertions are thread-independent:424

1. Value occurrence assertions specify the limit of occurrence of writes to a variable425

with a specific value. For instance, 0x n means that no write with value n to variable426

x has occurred or 1x n means that there is at most one write with value n to x in427

the current state. The formal definition and examples of these assertions are given in428

Section 5.5.429

2. Initial value which is denoted by xInit = n means that the initial value written to x430

is n. The formal definition and examples of this assertion are also given in Section 5.5.431

3. Covered write assertions, denoted by Cn
x , state that all writes to variable x except432

the last write are covered by an update (see Section 4.2), and that the last write to x433

has value n. This assertion is formally defined in Section 6 and is used in verification434

of Peterson’s mutual exclusion algorithm.435
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Init: x := 0; y := 0; r1 := 0; r2 := 0;
{x =1 0 ∧ y =2 0 ∧ r1 = 0 ∧ r2 = 0}

Thread 1 Thread 2
{y =2 0 ∧ r2 = 0} {x =1 0 ∧ r1 = 0}
1 : r1← x; 3 : r2← y;
{y =2 0 ∧ r2 = 0} {x =1 0 ∧ r1 = 0}
2 : y := 1; 4 : x := 1;
{r1 = 0 ∨ r2 = 0} {r1 = 0 ∨ r2 = 0}

{r1 = 0 ∨ r2 = 0}

Figure 8 Proof outline for load buffering

5.3 Load Buffering436

Our first example is the load buffering litmus test (see Figure 8), which we can show satisfies437

the postcondition r1 = 0 ∨ r2 = 0 since our semantics assumes absence of cycles in the438

sequence-before relation combined with reads-from [20, 12]. The assertions about the C11439

state capture properties about definite observations (i.e., observability assertions), which we440

formalise below.441

For a set of writes W and variable x ∈ VarG, let Wx = {w ∈W | var(w) = x} be the set442

of writes in W that write to x. We define the last write to x in W as:443

last(W,x) = w ⇐⇒ w ∈Wx ∧ (∀w′ ∈Wx. tst(w′) ≤ tst(w))444

Moreover, we define the definite observation of a view function, view with respect to a set of445

writes as follows:446

dview(view,W, x) = n ⇐⇒ view(x) = last(W,x) ∧ wrval(last(W,x)) = n447

The first conjunct ensures that the viewfront of view for x is the last write to x in W , and448

the second conjunct ensures that the value written by the last write to x in W is n.449

Definite observation. For a variable x, thread t and value n, we define:450

x =t n = λσ. dview(σ.tviewt, σ.writes, x) = n451
452

Expanding this out, we obtain:453

σ.tviewt(x) = last(σ.writes, x) ∧ wrval(last(σ.writes, x)) = n454

The first conjunct ensures that the viewfront of t for x is the last write to x in σ (thus t can455

only read this last write to x). The second conjunct ensures that the value written by the456

last write is n. The function dview is also used in the definition of conditional observation in457

Section 5.4.458

The proof of load buffering relies on the basic axioms in the following lemma. We assume459

atoms(Init) returns the set of assignments contained within Init.460

I Lemma 4. Each of the basic axioms below is sound (as per Definition 2), where the461

statements are decorated with the thread identifier of the executing thread.462

Init
x := n ∈ atoms(Init)
{true} Init {x =t n}

DOPres-Rd
{x =t′ m} r ←[A]

t y {x =t′ m}
463

DOPres-Wr
x 6= y

{x =t′ n} y :=t m {x =t′ n}
464

465

AAA
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Proof. In Isabelle. J466

Thus by rule Init an assignment x := n in Init ensures that x =t n for all threads t467

holds at program start. Note that such an initial assertion for the entire program is not468

subject to non-interference checks. The rule DOPres-Rd states that a definite observation469

x =t′ m is invariant over a read step executed by thread t. Note that pre/post conditions470

for DOPres-Rd refer to thread t′, while the read statement refers to thread t. Also note471

that there is no additional restriction on t and t′, thus the rule applies regardless of whether472

t = t′, or not. Similarly, there are two global variables x and y mentioned in the rule, but473

there are no further restrictions on their values. Rule DOPres-Wr gives a condition for474

invariance of a definite observation assertion over a write. It requires that the variable being475

observed is different from the variable that is updated.476

I Theorem 5. The proof outline for load buffering in Figure 8 is valid.477

Proof. The proof has been established in Isabelle. We outline the main steps below as it is478

instructive to understand the high-level proof strategy. First we establish local correctness:479

The initial condition is established by rule Init, which is in turn used to establish the480

initial assertions in both threads.481

In thread 1, local correctness of the postcondition of line 1 (precondition of line 2) follows482

from rule DOPres-Rd, and the postcondition of line 2 follows by weakening. The proof483

of local correctness in thread 2 is symmetric.484

We now establish interference freedom. The precondition of line 1 is interference free wrt485

line 3 by DOPres-Rd, and wrt line 4 by DOPres-Wr. This argument also applies to the486

precondition of line 2. Interference freedom of the postcondition of line 2 is trivial. The487

proof of interference freedom of the assertions in thread 2 is symmetric. J488

5.4 Message Passing489

Next we return to the message passing example from Section 2. Its verification requires the490

usage of the other two observability assertions.491

Possible observation. For a variable x, thread t and value n, we define:492

x ≈t n = λσ. ∃w ∈ σ.OW(t, x). wrval(w) = n493

Thus, there is a write to x that is observable to thread t with a value n.494

Conditional observation. For variables x, y, thread t and values m,n, we define:

[x = n](y =t m) = λσ. ∀w ∈ σ.OW(t, x). wrval(w) = n⇒
act(w) ∈WR ∧ dview(σ.mvieww, σ.writes, y) = m

The antecedent assumes that the value read for x is n, and the consequent ensures that w495

is a releasing write such that the definite view of this write for variable y returns m. As496

we shall see, one useful way of establishing this condition is by falsifying the antecedent by497

ensuring that thread t cannot observe n for x (see (4) below).498

Some useful relationships between the assertions above are given by the lemma below.499
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I Lemma 6. For variables x, y ∈ VarG, thread t and values m,n ∈ Val, each of the following500

holds:501

wfs ∧ x =t n⇒ x ≈t n (2)502

wfs ∧ x =t n ∧ x ≈t m⇒ n = m (3)503

x 6≈t n⇒ [x = n](y =t m) (4)504

x =t n ∧ x =t′ m⇒ n = m (5)505
506

Proof. In Isabelle. J507

By (2), given a well-formed state any definite observation implies a possible observation,508

and by (3) a definite observation must agree with a possible observation. By (4) if it is509

not possible to observe the antecedent of a conditional observation, then the conditional510

observation must hold. By (5) any two definite value observations must agree (since they511

both observe the last write to x).512

The next lemma lists the basic axioms that are used to prove correctness of the message513

passing example.514

I Lemma 7. Each of the rules next is sound (as per Definition 2), where the statements are515

decorated with the thread identifier of the executing thread.516

ModLast
{x =t n} x :=t m {x =t m}

ModSome
{true} x :=t m {x ≈t m}

517

NPOPres
{x 6≈t m} r ←[A]

t′ y {x 6≈t m}
NoOW

x 6= y

{x 6≈t n} y :=t′ m {x 6≈t n}
518

ReadLast
{x =t m} r ←t x {r = m}

519

CO-Intro
x 6= y

{y =t m ∧ x 6≈t′ n} x :=R
t n {[x = n](y =t′ m)}

520

Transfer
{[x = n](y =t m)} r ←A

t x {r = n⇒ y =t m}
521

522

Proof. In Isabelle. J523

I Theorem 8. The proof outline of message passing in Figure 3 is valid.524

Proof. The proof has been established in Isabelle. We outline the main steps below. First525

we show local correctness.526

Using Init we establish the precondition f =1 0 ∧ f =2 0 ∧ d =1 0 ∧ d =2 0.527

The precondition of the program implies the initial assertions of both threads. In thread 1,528

we use (3) to establish f 6≈2 1 since (3) is logically equivalent to529

wfs ∧ x =t n ∧ n 6= m⇒ x 6≈t m530

In thread 2, we use (3) in combination with (4).531

In thread 1, the post condition of line 1 (precondition of line 2) follows by application of532

NoOW and ModLast. The post condition of line 2 is trivial.533

In thread 2, the postcondition of line 3 follows by application of Transfer, while the534

postcondition of line 4 follows by application of ReadLast.535

AAA
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Init: x := 0; y := 0;
{xInit = 0 ∧ 0x 1 ∧ 0x 2}

Thread 1 Thread 2
{xInit = 0 ∧ 0x 1 ∧ 0x 2} {true}
1 : x := 1; 3 : a← x;
{0x 2 ∧ 1x 1 ∧ x enc= 1 1} {x enc= 2 a}
2 : x := 2; 4 : b← x;
{1 ≺≺x 2} {a 6= b⇒ a ≺x b}

{a = 2⇒ b 6= 1}

Figure 9 Proof outline for RRC2, where x ∈ VarG and a, b ∈ VarL

Next we show interference freedom.536

The preconditions of lines 1 and 2 can be shown to be interference free by applying537

NPOPres to the first conjunct and DOPres-Rd to the second.538

The precondition of line 3 is interference free against line 1 due to NoOW using the539

existing precondition f 6≈2 1 of line 1. The proof then follows by application of (4).540

Interference freedom against line 2, is proved using CO-Intro and the precondition at541

line 2.542

The precondition of line 4 is interference free against line 1 by (5) (i.e., since the precon-543

ditions are of lines 1 and 4 are contradictory). Interference freedom holds against line 2544

by rule DOPres-Wr.545

The postconditions of lines 2 and 4 are trivially interference free.546

J547

5.5 Read-Read Coherence548

Next, we verify three versions of the read-read coherence (RRC) litmus test as given in549

Figures 9, 10 and 11. The original RRC litmus test (Figure 10) guarantees that if one thread550

sees the writes to x (by threads 1 and 2) in a certain order, then the other thread see the551

writes in the same order. Here, the postcondition assumes that thread 3 has observed the552

write x := 1, then the write x := 2, while thread 4 has already seen the write x := 2 when553

reading x at line 5. It requires that thread 4 does not subsequently see value 1 when it reads554

x at line 6. Figure 9 presents a simpler variation where the ordering of writes to x is enforced555

by the thread ordering. Figure 11 combines RRC with message passing.556

Unlike message passing (which is a litmus test over two different variables), the RRC557

examples demonstrate the need for ordering and occurrence assertions which we introduce558

next.559

Possible value order. For values m,n and variable x, we define:560

m ≺x n = λσ. ∃w,w′ ∈ σ.writesx. wrval(w) = m ∧ wrval(w′) = n ∧
tst(w) < tst(w′)

561

562

Thus, there are two writes two x with values m and n, where the timestamp of the write563

with value m precedes the timestamp of the write with value n. Note that this m ≺x n does564

not preclude n ≺x m. E.g., if a thread writes m to x, then n, then m again, both m ≺x n565

and n ≺x m will hold. In this scenario, m ≺x m also holds since there are two separate566

writes to x with value m.567
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Init: x := 0; y := 0;
{0x 1 ∧ 0x 2 ∧ xInit = 0}

Thread 1
{0x 1}
1 : x := 1;
{1x 1}

Thread 2
{0x 2}
2 : x := 2;
{1x 2}

Thread 3
{true}
3 : a← x;
{x enc= 3 a}
4 : b← x;
{a 6= b⇒ a ≺x b}

Thread 4
{true}
5 : c← x;
{x enc= 4 c}
6 : d← x;
{c 6= d⇒ c ≺x d}

{a = 1 ∧ b = 2 ∧ c = 2⇒ d 6= 1}

Figure 10 Proof outline for RRC, where x ∈ VarG and a, b, c, d ∈ VarL

Definite value order. For values m,n and variable x, we define:568

m ≺≺x n = λσ. (m ≺x n)(σ) ∧ (∀w,w′ ∈ σ.writesx.
wrval(w) = m ∧ wrval(w′) = n⇒
tst(w) < tst(w′))

569

570

Note that this implies m 6= n. Unlike possible value orders if m ≺≺x n holds then n 6≺≺x m.571

Note also that our definition allows several writes to x with values m and n provided all572

writes with value m occur (in timestamp order) before all writes with value n.573

Initial value. For values n and variable x, we define:574

xInit = n = λσ. ∃w ∈ σ.writesx. wrval(w) = n ∧
(∀w′ ∈ σ.writesx. w 6= w′ ⇒ tst(w) < tst(w′))

575

576

Note that for the construction in this paper, it suffices to return the write to x with timestamp577

0 since we assume that writes are initialised with timestamp 0. The definition above however,578

is more robust since it also applies to situations where variables are not initialised, or579

initialised to an arbitrarily chosen timestamp (as is the case in our Isabelle encoding).580

Encountered value. For a variable x, thread t and value n, we define:581

x
enc= t n = λσ. ∃w ∈ σ.writesx. tst(w) ≤ tst(σ.tviewt(x)) ∧ wrval(x) = n582

583

That is x enc= t n holds iff there is a write to x with value n whose timestamp is at most the584

timestamp of the viewfront of t for x. Note that x enc= t n does not guarantee that t has read585

the value n for x. For instance, x enc= t n could hold if there is a write, say w, of x with value586

n and t writes to x with a write whose timestamp is greater than tst(w).587

Value occurrence. These are straightforward to define in terms of our value order assertions588

above. For a variable x, thread t and value n, we define:589

0x n = ∃m. xInit = m ∧m 6= n ∧m 6≺x n590

1x n = n 6≺x n591
592

Thus, if 0x n holds then there is no write with value n. If 1x n holds, then either there is no593

write to x with value n, or if there is a write with value n, this is the only such write.594

To understand the interaction between value ordering and write limit assertions, consider595

the following lemma. It states that if there is a possible value order on x with m preceeding596

n and there is at most one write with these values, then there is a definite value order on x597

with m preceeding n.598
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I Lemma 9. For x ∈ VarG and m,n ∈ Val, we have:599

m ≺x n ∧ 1xm ∧ 1x n⇒ m ≺≺x n (6)600

m ≺≺x n⇒ n 6≺≺x m (7)601
602

Proof. In Isabelle. J603

We discuss the proof of RRC2 in detail. Its proof relies on the following lemma which604

captures some basic properties about value assertions.605

I Lemma 10. Each of the rules below is sound (as per Definition 2), where the statements606

are decorated with the thread identifier of the executing thread.607

ZWr
m 6= n

{0xm} y :=[R]
t n {0xm}

DVPres
{m ≺≺x n} r ←[A]

t y {m ≺≺x n}
608

1Intro
i 6= m{

xInit = i ∧ 0xm
}
x :=[R]

t m {1xm}
EncWr

{true}x :=[R]
t m {x enc= t m}

609

EncRd
{true} r ←[A]

t x
{
x

enc= t r
} EPO

{x enc= t m} r ←[A]
t x

{
r 6= m⇒ m ≺x r

}610

DVIntro
i 6= n

{xInit = i ∧ 0x n ∧ 1xm ∧ x
enc= t m} x :=[R]

t n {m ≺≺x n}
611

1PresR
{1xm} r ←[A]

t y {1xm}
POrd

{m ≺x n} C {m ≺x n}
612

613

Proof. In Isabelle. J614

I Theorem 11. The proof outline for RRC2 in Figure 9 is valid.615

Proof. This proof has been mechanised in Isabelle. Once again, we describe the proof outline616

to give an overview of how our proofs are used. For local correctness we have the following.617

The initialisation clearly satisfies the precondition of the program, and this implies the618

precondition of thread 1. The precondition of thread 2 is trivial.619

Next we consider the postcondition of line 1. The first conjunct holds by ZWr, the620

second conjunct holds by 1Intro and the third by rule EncWr.621

The postcondition of line 2 holds by rule DVIntro.622

In thread 2, the postcondition of line 3 holds by rule EncRd, and the postcondition of623

line 4 holds by rule EPO.624

Next we check interference freedom.625

The precondition of line 1 is stable with respect to lines 3 and 4 by ZWr.626

Next consider the precondition of line 2. The first and second conjuncts are stable with627

respect to lines 3 and 4 by ZWr and 1PresR, respectively. The third conjunct is trivially628

preserved (see Isabelle).629

The postcondition of line 2 holds by DVPres.630

The precondition of line 3 is trivial and the postcondition of line 3 holds by POrd.631

J632

Correctness of RRC and RRC3 is established by the following theorem.633
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Init: x := 0; y := 0;
{0x 1 ∧ 0x 2 ∧ x =1 0 ∧ y 6≈2 1}

Thread 1{
0x 1 ∧ y 6≈2 1 ∧
(0x 2⇒ x =1 0)

}
1 : x := 1;{

1x 1 ∧ y 6≈2 1 ∧
(0x 2⇒ x =1 1)

}
2 : y :=R 1;
{1x 1}

Thread 2
{1x 1 ∧ 0x 2 ∧ [y = 1](x =2 1)}
3 : r ←A y;
{1x 1 ∧ 0x 2 ∧ (r = 1⇒ x =2 1)}
4 : x := 2;
{1x 2 ∧ (r = 1⇒ 1 ≺≺x 2)}

Thread 3
{true}
5 : a← x;
{x enc= 3 a}
6 : b← x;
{a 6= b⇒ a ≺x b}

{r = 1 ∧ a = 2⇒ b 6= 1}

Figure 11 Proof outline for RRC3, where x, y ∈ VarG and a, b ∈ VarL

I Theorem 12. The proof outlines for RRC and RRC3 in Figure 10 and Figure 11, respect-634

ively are valid.635

Proof. In Isabelle. J636

For RRC (Figure 10), the precondition of line 4 records the fact that thread 3 has637

encountered a (whatever the value of a may be). Moreover, it guarantees that there is638

at most one write of x with values 1 and 2. The first conjunct (i.e., x enc= 3 a) allows us639

to conclude that after x is read at line 4, if a and b are different, then the value for a is640

possibly ordered before the value for b. The second and third conditions are used to establish641

the postconditions 1x 1 and 1x 2. This argument also applies to the assertions in thread 4.642

Finally, we show that the postcondition of the program holds as follows, where we assume643

post is the conjunction of the postcondition of each thread.644

post⇒ (a = 1 ∧ b = 2 ∧ c = 2⇒ d 6= 1)645

⇐⇒ post ∧ a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1⇒ false (logic)646

⇐= 1x 1 ∧ 1x 2 ∧ 1 ≺x 2 ∧ 2 ≺x 1⇒ false (logic)647

⇐= 1 ≺≺x 2 ∧ 2 ≺≺x 1⇒ false (6)648

⇐= true (7)649
650

The calculation above has been verified with Isabelle, but we recall the proof here as it651

provides insight into the interactions between different value assertions.652

RRC3 (Figure 11) combines message passing on y with RRC on x. Namely, knowledge653

of x := 1 in thread 1 is transferred to thread 2 using a release-acquire synchronisation on654

y. Thus, if thread 2 reads 1 for y it must also have encountered 1 for x. Thus, if r = 1,655

then the write on line 4 must have happened after the write on line 1. This means that it656

should be impossible for thread 3 to read 2 for x (at line 5) then read 1 for x (at line 6).657

Unlike message passing, in RRC3, the “data” variable x is updated both before and after658

synchronisation. Thus, the assertions on definite values (e.g., x =1 1) become conditional659

on whether line 4 has already been executed. In particular, the antecedent 0x 2 allows us660

to assume that line 4 has not yet been executed. As with RRC, we must separately prove661

that the conjunction of the postconditions of the threads implies the postcondition of the662

program. This proof is mechanised in Isabelle, and is elided here.663
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Init: flag1 := 0; flag2 := 0; turn := 0 ∧ after1 := false; after2 := false
Thread 1{
¬after1 ∧ flag1 =1 0 ∧ turn 6≈2 2 ∧ (C0

turn ∨ [turn = 1](flag2 =1 1))
∧(after2 ⇒ C1

turn ∧ [turn = 1](flag2 =1 1))

}
1: flag1 := 1 ;{
¬after1 ∧ flag1 =1 1 ∧ turn 6≈2 2 ∧ (after2 ⇒ C1

turn ∧ [turn = 1](flag2 =1 1))
}

2: 〈turn.swap(2)RA ; after1 := true〉{
after1 ∧ (after2 ∧ (flag2 ≈1 0 ∨ turn ≈1 1)⇒ turn =2 1)

}
do

3: r1 ←A flag2{
after1 ∧ (after2 ∧ (r1 = 0 ∨ turn ≈1 1 ∨ flag2 ≈1 0)⇒ turn =2 1)

}
4: r2 ← turn{

after1 ∧ (after2 ∧ (r1 = 0 ∨ r2 = 1 ∨ turn ≈1 1 ∨ flag2 ≈1 0)⇒ turn =2 1)
}

5: until (r1 = 0 ∨ r2 = 1)
{after1 ∧ (after2 ⇒ turn =2 1)}

6: Critical section ;
7: 〈flag1 :=R 0 ; after1 :=false〉

Figure 12 Peterson’s algorithm (adapted from [36]) and its proof outline. Thread 2 (not shown)
is symmetric.

6 Case study: Peterson’s algorithm664

We turn to our final case study, the verification of the mutual exclusion property of a665

version of Peterson’s algorithm. The complexity of this case study is much greater than666

our earlier examples. This program contains a loop, features a careful mixture of relaxed667

and release/acquire operations to the same variable, and an RMW operation whose precise668

semantics is critical to the correctness of the algorithm.669

Our version of Peterson’s algorithm4, presented in Figure 12 is a mutual exclusion670

algorithm for two threads implemented for C11 using release-acquire annotations [36]. As671

with the original algorithm, variable flagi, for i ∈ {1, 2} is used to indicate whether thread i672

intends to enter its critical section. In this version of the algorithm, we let flagi range over673

{0, 1}, where 0 is used for the boolean value “false”, and 1 is used for the boolean value “true”.674

The shared variable turn is used to cause a thread to “give way” when both threads intend675

to enter their critical sections at the same time. Our verification uses auxiliary variables676

after i for each thread i (as does the proof for a sequentially consistent setting in [7]), the677

purpose of which we describe below.678

We describe the algorithm for thread 1; the other thread is symmetric. For now, we679

ignore the assertions. The flag variable is set to 1 (line 1) using a relaxed write (which cannot680

induce any synchronisation), but is set to 0 (line 7) using a release annotation. The intention681

of the latter is to synchronise this write (of 0 to flag1) with the read of flag1 at line 3 in682

thread 2. The value of turn is set using a swap command. The swap is implemented using683

an C11 RMW operation that has both the release and acquire annotations. When the swap684

is executed, as part of the same transition, the auxiliary variable after1 is also set, indicating685

that thread 1 is ready to enter the busy wait loop beginning at line 3, and then to enter the686

critical section.687

The busy wait loop forces thread 0 to wait until either flag2 is 0 (indicating that thread688

2 is not trying to enter the critical section) or turn = 1 (indicating that it is thread 1’s turn689

4 For simplicity our version of the algorithm does not have an outermost loop.
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to enter the critical section). Note that the read of turn within the guard of the busy wait690

loop (line 5) is relaxed.691

We turn now to the proof that this version of Peterson’s algorithm has the mutual692

exclusion property. We prove mutual exclusion in two steps. First, we show that the given693

proof outline is valid, and second, that the conjunction of the precondition of thread 1’s694

critical section (line 6) and thread 2’s must be false. Therefore, the two threads cannot695

simultaneously be in their critical sections.696

We deal with the second step first by showing that the formula below is false:697

after1 ∧ (after2 ⇒ turn =2 1) ∧ after2 ∧ (after1 ⇒ turn =1 2)698
699

It is easy to see that this implies turn =1 2 ∧ turn =2 1. However, by (5) this situation is700

impossible.701

The first step is more elaborate and we only describe certain aspects. The precondition of702

line 3 is also an invariant of the busy wait loop. This assertion ensures that if thread 1 is able703

to exit the busy wait loop, then the precondition of the critical section will be satisfied. Note704

that thread 1 exits the loop if it reads 0 from flag2 (which is only possible when flag2 ≈1 0)705

or it reads 1 from turn (which is only possible when turn ≈1 1). The invariant states that if706

one of these conditions holds in a state where thread 2 is waiting to enter the critical section707

(that is, after2), we can conclude turn =2 1 as required.708

Proving that the precondition of line 3 is satisfied in the post-state of line 2 requires using709

a feature of our assertion language, closely related to the semantics of RMW operations,710

that we now introduce. Recall from the Update rule in Figure 5 that whenever a write w711

is read-from by an RMW operation, w becomes covered, so that no later write (or RMW)712

operation can be inserted between w and the RMW. This feature of C11 is critical to the713

correctness of Peterson’s algorithm. Observe that the turn variable is only modified by RMW714

operations, and therefore every write to turn is covered, except the last. To formally state715

this, we need the third occurrence assertion Cn
x , defined as follows.716

Cn
x = λσ. ∀w ∈ σ.writesx. w /∈ σ.covered ⇒ wrval(w) = n ∧ w = last(W,x)717

718

So Cn
x means that every write to x except the last is covered and the value written by that719

last write is n.720

We use the following lemma on covered.721

I Lemma 13.

CVD-Upd
{Cn

x} updRA(x,m, l) {m = n ∧Cl
x}

CVD-Wr
x 6= y

{Cn
x} y :=[R] m {Cn

x}
722

CVD-Rd
{Cn

x} r ←[A] y {Cn
x}

CVD-DObs
{Cn

x} updRA(x,m, n) {x =t n}
723
724

Rule CVD-Upd states that if Cn
x holds in the pre-state, then after executing updRA(x,m, l),725

we must have that m = n (since the only value available for the RMW to read is n), and726

furthermore we obtain a new covered predicate Cl
x. Thus, it is possible to maintain a covered727

predicate in a program (with possibly different return values) by ensuring each modifiation to728

the covered variable is via an RMW. This is a property that is true of Peterson’s algorithm729

as given in Figure 12. Rules CVD-Wr and CVD-Rd give preservation properties for the730

covered assertion for a read and a write, respectively. Finally, CVD-DObs is used to establish731

a definite observation of a covered assertion after an update command.732
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lemma d_obs_Wr_set:
assumes "wfs σ"

and "wr_val a = Some n"
and "avar a = x"
and "[x =t m] σ"
and "step t a σ σ’"

shows "[x =t n] σ’"

corollary d_obs_WrX_set:
"wfs σ =⇒ [x =t m] σ =⇒ σ [x := n]t σ’ =⇒ [x =t n] σ’"

corollary d_obs_WrR_set :
"wfs σ =⇒ [x =t m] σ =⇒ σ [x :=R n]t σ’ =⇒ [x =t n] σ’"

corollary d_obs_RMW_set :
"wfs σ =⇒ [x =t m] σ =⇒ σ RMW[x,w,n]t σ’ =⇒ [x =t n] σ’"

Figure 13 Isabelle encoding of basic axioms over C11 assertions

The precondition of line 2 asserts that if thread 2 is ready to enter the critical section733

(that is, after2) then the RMW to be executed at line 2 must read from the last write which734

has value 1 (that is, C1
turn) and when this RMW occurs then thread 1 will definitely see735

flag2 set (that is, [turn = 1](flag2 =1 1)). This is enough to show that if after2 then in the736

post-state of the RMW, flag2 6≈1 0 which is sufficent to prove the postcondition of line 2.737

Of course, the sequential reasoning above must be combined with an interference freedom738

check, which is supported by a set of basic lemmas describing how Cn
x is updated. This leads739

to the following theorem, which establishes validity of the proof outline.740

I Theorem 14. The proof outline of Peterson’s algorithm (Figure 12) is valid.741

Proof. In Isabelle. J742

We note that Peterson’s algorithm represents a challenge in deductive verification. Unlike743

the litmus tests presented above, there is sufficient complexity in the algorithm and the744

resulting proof outline so that pen-and-paper proofs cannot be trusted. Using our mech-745

anisation, we explored several variations of the proof outline in Figure 12, and discovered746

simplifications to our original pen-and-paper proofs.747

7 Mechanisation748

As already mentioned, the operational semantics as well as all lemmas and theorems presented749

in this paper have been mechanised in Isabelle. In this section, we discuss our mechanisation750

effort.751

To prove the lemmas about basic assertions, we typically prove a more general result752

relating to reads and writes, which are then specialised so that they can be used in the753

verification of the algorithms. For example, we first prove the lemma in Figure 13, which754

describes changes to definite values and applies to any writing transition. This is then755

specialised to the corollaries on the right, which are easier for Isabelle to find when performing756

the verification of the proof outlines.757
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The generic lemmas require some amount of interactive work. However, once verified, it is758

straightforward to use them to prove the corollaries. For example, corollary d_obs_WrX_set in759

Figure 13 is verified with the command “by (metis WrX_def avar.simps(2) d_obs_Wr_set760

wr_val.simps(1))”, which is found automatically by Isabelle’s built in sledgehammer761

tool [10].762

Such lemmas and corollaries are in turn used in the proofs of programs. First the program763

state (i.e., ΣC11) is encoded as a record type with a special variable that models the C11764

state. The programs themselves are encoded as a relation over these records with program765

counters modelling control flow. This allows the proof outlines to be encoded as predicates766

mapping program counters to the assertions at that control point. We then verify a set767

of lemmas that guarantee local correctness and interference freedom, where we decompose768

proofs and apply case analysis over the individual program steps (e.g., reads, writes for769

each thread). Once a proof has been decomposed, sledgehammer is able to find the relevant770

corollaries (e.g., those in Figure 13) to discharge proofs automatically.771

8 Related Work772

The semantics and verification of programs running on weak memory models has recently773

received a lot of attention. Lahav [21] gives a brief survey for C11.774

Our timestamp based operational semantics is motivated by ideas in [13] and is similar775

to the semantics of Kaiser et al. [16, 17]. We note there are differences in coverage of the776

memory models in [13, 16, 17]. Dolan et al. [13] cover a sequentially consistent (SC) and777

relaxed accesses for OCAML, where the SC operations behave like Java volatiles. Kaiser et778

al [16] covers non-atomics and release-acquire, while Kang et al. [17] support a much larger779

fragment of C11, including so-called load-buffering cycles.780

Abdulla et al. have shown the reachability problem for release-acquire to be undecidable [2].781

A number of works target model checking for weak memory, e.g., by explicitly encoding782

architectural structures leading to weak behaviour, like store buffers [33, 5]. Ponce de León783

et al. [30, 14] have developed a bounded model checker for weak memory models, taking the784

axiomatic description of a memory model as input. (Bounded) model checkers for specific785

weak memory models are furthermore the tools CBMC [6] (for TSO), Nidhugg [1] (for TSO786

and PSO), RCMC [18] (for C11) and GenMC [19] (again, parametric in memory model).787

A (non-automatic) reasoning technique for proving invariants – parameterised by a788

weak memory model – has been proposed by Alglave and Cousot [4]. They propose a new789

semantics, different from an operational one without any coherence order (or modification790

order) constraining the order of writes to memory. Their assertions contain so-called pythia791

variables to uniquely identify values of read events, and require a separate communication792

proof (differentiating their method from standard Owicki-Gries reasoning). They say “In793

addition to the initialisation, sequential, and non-interference proof, the main difference794

with Owicki and Gries [27] (and Lamport 1977) is the use of pythia variables and the795

read-from relation in assertions and the communication proof showing that reads-from is796

well-formed.” [4]. Our method in contrast only requires the initialisation, sequential, and797

non-interference proofs as with the original technique.798

Another manual method for the RC11 memory model has been developed by Doherty799

et al. [12], who cover the message passing example and Peterson’s algorithm. Our work is800

inspired by this existing work, however, there are several differences. They use a classical801

model of the C11 state (expressed in terms of a set of relations, e.g., reads-from, sequenced-802

before etc), develop assertions over these relations and a small proof calculus for these803
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assertions. However, their methods are at a lower level of abstraction than the techniques804

presented in this paper since the assertions are stated in terms of individual relations that805

make up each state. Thus, it is not possible to directly develop a Hoare logic for their806

assertions and mechanisation itself is more difficult.807

Also close to our work is that of Lahav and Vafeiadis [22] who also develop an Owicki-Gries808

style proof calculus. We consider all their examples except RCU — our logic can handle the809

RCU example, but this proof has thus far not been mechanised. Moreover, we include several810

other case studies such as litmus tests that combine read-read coherence with message passing811

and the non-trivial Peterson’s algorithm. There are several additional differences to note. (1)812

Lahav and Vafeiadis’ proof calculus is developed in the absence of an operational semantics,813

and hence, their definition of a valid Hoare triple is non standard (see [22, Definition 9]). A814

consequence of this is that they must careful about the introduction of auxiliary variables,815

resorting to the more restricted notion of a ghost variable. In contrast, we use traditional816

auxiliary variables — an auxiliary variable must not affect the control flow of a program817

nor be assigned to any program variable. Note however, that simplify the presentation, we818

use auxiliary variables in a more restricted manner (see Section 3). (2) They do not handle819

relaxed accesses — as stated in their conclusion: “While OGRA’s non-interference condition820

appears to be restrictive, it is unsound for weaker memory models, such as C11’s relaxed821

accesses . . . ”. (3) They do not provide a mechanisation.822

A frequently employed starting point for program logic is separation logic, for which823

a number of extensions to weak memory exist (GPS [34], RSL [16]). Svendsen et al. [32]824

propose a separation logic based on the promising semantics of Kang et al. [17]. The principle825

of ownership transfer used therein naturally fits to message passing using release acquire.826

Prover support for such separation logic based proofs – like ours with Isabelle – has been827

developed for the Iris proof system [16]. Tool support has also been developed by Summers828

and Müller [31], where the RSL logic has been encoded in the Viper tool, offering a level829

of proof automation. Their encoding is proved sound and complete with respect to RSL.830

However, such efforts do not provide a clear link between C11 semantics and traditional831

reasoning using Hoare logics.832

9 Conclusion833

In this paper, we have introduced an assertion language for C11 RAR which allows to re-use834

the entire Owicki-Gries proof calculus except for the axiom of assignment. The assertion835

language is based on an operational semantics for C11 RAR which we have shown to be sound836

wrt. standard axiomatic semantics. We have exemplified reasoning on a number of standard837

C11 RAR litmus tests as well as a C11 RAR annotated version of Peterson’s algorithm. All838

proofs ranging are mechanised within Isabelle — this includes soundness of the basic axioms839

for weak memory reads, writes and updates, and validity of proof outlines for the examples840

presented.841

We are currently integrating this work5 into the standard Owicki-Gries library that842

is included in the Isabelle distribution [26]. As future work, we aim to tackle fragments843

of C11 larger than C11 RAR, e.g., fragments that allow the load buffering example to844

terminate with postcondition r1 = 1 ∧ r2 = 1 [9, 17], SC annotations [20], as well as845

release sequences and fences [8]. Extending our operational semantics to handle the final846

5 A set of preliminary results is available https://www.dropbox.com/sh/4yr2w7792qwyw09/
AACsWUXtZbK3PvyfJkqqjyDYa within the file OG-Isabelle.zip.

https://www.dropbox.com/sh/4yr2w7792qwyw09/AACsWUXtZbK3PvyfJkqqjyDYa
https://www.dropbox.com/sh/4yr2w7792qwyw09/AACsWUXtZbK3PvyfJkqqjyDYa
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two features is straightforward, but is not considered in this paper as it complicates the847

semantics and detracts from our main contribution, i.e., a simple extension to Hoare logic to848

enable reasoning about C11 programs. Hoare-style reasoning that incorporates the other two849

features is currently being investigated.850
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A Correctness of the Operational Semantics937

In this section, we prove that the operational semantics presented in this paper is sound938

w.r.t. a standard version of the C11 RAR axiomatic semantics.939

We base this proof on the operational semantics for C11 RAR developed by Doherty et940

al. [12] which they have proved to be equivalent to a suitable fragment of the C11 RAR941

axiomatic semantics of [9]. In what follows, we refer to the semantics of [12] as the Explicit942

semantics as the states of its memory semantics are simply consistent C11 RAR executions.943

We refer to the semantics presented in this paper as the View semantics.944

In Section A.1, we describe the operational semantics of [12]. In Section A.2, we present945

a simulation relation from the View memory semantics to the Explicit memory semantics.946

This is sufficent to show that all sequences of operations accepted by the View semantics are947

also accepted by the Explicit semantics.948

In what follows, we refer to states of the Explicit semantics using the variables E,E′ and949

states of the View semantics as V, V ′.950

A.1 The Explicit Memory Semantics951

We refer the reader to [12] for a full discussion of the Explicit semantics. In this paper, we952

present only the semantics that relates to memory operations, and we do so only briefly.953

States of the Explicit semantics are simply C11 RAR executions, of the form E =954

(X, sb, rf,mo). Where sb, rf,mo are relations on the set of operations X with their usual955

meanings. That is sb ⊆ X ×X is the sequenced-before relation; rf ⊆W × R ∩X ×X is the956

reads-from relation; and mo ⊆W ×W ∩X ×X is the modification order.957

In an Explicit state E = (X, sb, rf,mo) we let X ⊆ Act × Q × T , where Act is the958

set of operations andT is the set of threads. In the original presentation, [12] we specify959

X ⊆ Act × G × T where G is a set of tags that are not further specified, which serves to960

distinguish repeated occurrences of the same operation. Here, we let G = Q, for uniformity961

with the view semantics.962

The Explicit semantics uses additional synchronized-with (denoted sw) and happens-before963

(denoted hb) relations, defined as follows:964

sw = rf ∩ (WR × RA) (8)965

hb = (sb ∪ sw)+ (9)966
967

In the Explicit semantics, all variables are initialised by a special initialising thread968

0 ∈ T . Define the set of initialising writes to be IWr = {w ∈ W | tid(w) = 0}. The initial969

states of our operational model are those of the form E0 = ((I, ∅), ∅, ∅) where I ⊆ IWr, and970

for each variable x, there is exactly one write w ∈ I such that var(w) = x. For a state971

E = ((X,_),_,_), let IE = X ∩ IWr.972

The relation fr = (rf−1; mo)\Id (where ; is relational composition) is the “from-read”973

relation, that relates each read to all writes that are mo-after the write the read has read974

from. We must subtract Id (identity) edges from rf−1; mo to cope with update events, which975

have the potential to induce reflexivity in fr [9, 20].976

In addition, the semantics uses the extended coherence order [20], denoted eco, which977

fixes the order of reads and writes to each variable. Formally we define:978

eco = (fr ∪mo ∪ rf)+ (10)979
980
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Read

a ∈ {rd(x, n), rdA(x, n)} wrval(w) = n
w ∈ E.OW(t, x) rf′ = rf ∪ {(w, e)} mo′ = mo

((X, sb), rf,mo) e=⇒ ((X, sb) + e, rf′,mo′)

Write

a ∈ {wr(x, n), wrR(x, n)} w ∈ E.OW(t, x)\E.covered
rf′ = rf mo′ = mo[w, e]

((X, sb), rf,mo) e=⇒ ((X, sb) + e, rf′,mo′)

RMW

a = updRA(x,m, n) w ∈ E.OW(t, x)\E.covered
wrval(w) = m rf′ = rf ∪ {(w, e)} mo′ = mo[w, e]

((D, sb), rf,mo) e=⇒ ((X, sb) + e, rf′,mo′)

Figure 14 Event semantics assuming E = ((X, sb), rf,mo), e = (g, a, t) and g /∈ tags(X)

The set of encountered writes are the writes that thread t is aware of (either directly or981

indirectly) in state E = ((X, sb), rf,mo), and are given by:982

E.EW = {w ∈W ∩D | ∃e ∈ D. tid(e) = t ∧
(w, e) ∈ eco?; hb?} ∪ IE

983

984

where R? is the reflexive closure of relation R. Thus, for each w ∈ E.EW, there must exist985

an event e of thread t such that w is either eco- or hb- or eco; hb-prior to e.986

From these, we determine the observable writes, which are the writes that thread t can987

observe in its next read. These are defined as:988

E.OW(t, x) = {w ∈W ∩ E.X | loc(w) = x ∧ ∀w′ ∈ E.EW(t) ∧ (w,w′) /∈ E.mo}989
990

Thus, observable writes are not succeeded by any encountered write in modification order,991

i.e., the thread has not seen another write overwriting the value being read.992

Finally, to guarantee atomicity of the update events, there cannot be any write operations993

(in modification order) between the write that an update reads from and the write of the994

update itself. We therefore define the set of covered writes as follows:995

E.covered = {w ∈W ∩ E.X | ∃u ∈ U. (w, u) ∈ rf}996
997

The transition relation of the Explicit semantics is given in Figure 14.998

I Lemma 15 (Invariants of the Explicit Semantics). If E = (X, sb, rf,mo) and E is reachable999

from an initial state via a sequence of transitions of the Explicit semantics, then1000

mo totally orders the writes to each variable x. That is, for all w,w′ ∈ X ∩W, such that1001

loc(w) = loc(w′).1002

(w,w′) ∈ mo ∨ (w′, w) ∈ mo (11)1003
1004

For each variable x, there is at least one write. That is, for each x1005

∃w ∈ X ∩W.loc(w) = x (12)1006
1007

Proof. These are simple inductive invariants of the semantics. J1008
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A.2 Soundness of the View Semantics1009

We turn now to the soundness of the View semantics. Note that in the semantics as presented1010

in the body of this paper, writes are recorded in the state as a pair (w, q) ∈ W × Q. For1011

uniformity with the Explicit state semantics, in this proof we record writes in the state as1012

a triple (w, q, t) ∈ W × Q × T . The transition rule for writes for the View semantics now1013

becomes1014

Write

a ∈ {wr(x, n), wrR(x, n)} (w, q) ∈ σ.OW(t, x) \ σ.covered fresh(q, q′)
writes′ = σ.writes ∪ {(a, q′, t)} tview′t = σ.tviewt[x := (a, q′, t)]
σ a

t σ[tviewt := tview′t,mview(a,q′) := tview′t,writes := writes′]
1015

The other rules are changed similarly. This transformation has no effect on the observable1016

behaviour of the semantics. But now, the set of writes V.writes in some View state now has1017

the same type (or structure) as the set of events in some Explicit state E.X, whic will prove1018

to be convenient later.1019

In this section, we prove the following theorem, which states that every behaviour of the1020

View semantics is also a behaviour of the Explicit semantics.1021

I Theorem 16. For every sequence of steps of the View semantics1022

V0
a1 V1

a2 . . .
an Vn1023

1024

such that V0 is an initial state of the View semantics, there is a sequence of steps of the1025

Explicit semantics1026

V0
a1=⇒ V1

a2=⇒ . . .
an==⇒ Vn1027

1028

such that E0 is an initial state of the Explicit semantics, having the same sequence of actions.1029

We prove this using the method of simulation relations (see e.g., [24]).1030

First some preliminary definitions.1031

I Definition 17. Given an Explicit state E = (X, sb, rf,mo)1032

1. (Events of a thread.) Let E.Xt = {e ∈ X | tid(e) = t}1033

2. (mo-maximal.) For S ⊆ X, let E.maxmo(S) = {w ∈ S ∩W | ∀w′ ∈ X.(w,w′) /∈ mo}1034

3. (Causal closure.) For S ⊆ X, let E.cclose(S) = {e | ∃e′ ∈ S.(e, e′) ∈ eco? ◦ hb?} ∪ IE1035

4. (View modification order.) Let V.mo = {(w,w′) | w,w′ ∈ V.writes ∧ tst(w) < tst(w′)}1036

where P.eco and P.hb are defined for an C11 RAR execution as usual.1037

We sometimes omit the Explicit state from these auxiliary variables, when the state in1038

question is clear from context. For example, E.maxmo sometimes becomes maxmo.1039

I Lemma 18. For any Explicit state E = (X, sb, rf,mo)1040

EW(t) = cclose(Xt) ∩W (13)1041
1042

and for any set S ⊆ X,1043

1.

maxmo(S) ⊆ X (14)1044
1045

2.

maxmo(S) ⊆W (15)1046
1047

AAA
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3. for each variable x there is precisely one write w ∈maxmo(S) such that loc(w) = x.1048

Proof. We prove each property in turn.1049

(13) This follows immediately from the definitions of EW and cclose:1050

w ∈ EW(t) ⇐⇒ w ∈W ∧ ∃e′ ∈ Xt.(e, e′) ∈ eco?; hb1051

⇐⇒ w ∈W ∧ w ∈ cclose(Xt)1052

⇐⇒ w ∈ cclose(Xt) ∩W1053
1054

(14) By the definition of maxmo, if w ∈maxmo(S) then w ∈ S ⊆ X1055

(15) By the definition of maxmo, if w ∈maxmo(S) then w ∈W.1056

(3) By Property 11 of the explicit semantics, E.mo totally orders the writes to each x.1057

Thus, for any distinct writes v, w such that loc(v) = loc(w) = x, either (v, w) ∈ E.mo or1058

(w, v) ∈ E.mo. In each case, the mo-earlier of the two writes cannot be mo-maximal, and1059

therefore v and w cannot both be in E.maxmo(S). This ensures uniqueness. The fact1060

that a write to x exists is immediate from Property 12 of the Explicit semantics.1061

J1062

Property 3 shows that maxmo(X) defines a function from variables to writes. We denote by1063

maxmo(X,x) the unique write in maxmo(X) such that loc(w) = x.1064

For any Explicit state E, and any S ⊆ E.X ∩W, we say that S is complete if for every1065

location x there is some w ∈ S with x = loc(w). Note that if S is complete then maxmo(S, x)1066

is defined.1067

I Lemma 19. For any Explicit state E, and any S ⊆ E.X ∩W, E.cclose(S) is complete.1068

Proof. IE ⊆ E.cclose(S), and IE is clearly complete. J1069

I Lemma 20. For any Explicit state E, and any complete S, S′ ⊆ E.X where S is complete,1070

if there exists a w ∈ S′ such that loc(w) = x,1071

E.maxmo(S ∪ S′, x)1072

=
{
E.maxmo(S, x) if (E.maxmo(S′, x), E.maxmo(S, x)) ∈ E.mo
E.maxmo(S′, x) otherwise

(16)1073

1074

otherwise1075

E.maxmo(S ∪ S′, x) = E.maxmo(S, x) (17)1076
1077

Proof. If there exists a w ∈ S′ such that loc(w) = x then both E.maxmo(S′, x) and1078

E.maxmo(S, x) are defined and E.maxmo(S ∪ S′, x) is the maximum of these.1079

If there is no such write then1080

(S ∪ S′) ∩ {w | loc(w) = x} = S ∩ {w | loc(w) = x}1081

and thus E.maxmo(S ∪ S′, x) = E.maxmo(S, x) as required. J1082

Note that for every step of the Explicit semantics E e=⇒ E′ there is some unique write1083

that the event e interacts with, for example the write that e reads from if e is a read or1084

RMW. The write w mentioned in each of the Explicit semantics transition rules of Figure 14.1085

In what follows we exhibit this write as a label on the transition relation. Thus we write1086

E
w,e==⇒ E′ iff E e=⇒ E′ and w is the write that e interacts with.1087
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I Definition 21. Given an Explicit state E, we say that a thread t is before a write w at1088

location x, denoted t 4x w if1089

(E.maxmo(E.EW(t), x), E.maxmo(E.cclose({w}), x)) ∈ E.mo1090

Likewise, we say that a write w is before a write t at location x, denoted w 4x t if1091

(E.maxmo(E.cclose({w}), x), E.maxmo(E.EW(t), x)) ∈ E.mo1092

I Lemma 22 (Max Encountered Writes). For any Explicit transition E w,e==⇒ E′ where w and1093

e synchronise, and for all x, if e is an (acquiring) read then1094

E′.maxmo(E′.EW(t), x) =
{
E.maxmo(E.EW(t), x) if w 4x t

E.maxmo(E.cclose({w}), x) otherwise
(18)1095

1096

and if e is an update then1097

E′.maxmo(E′.EW(t), x) (19)1098

=


e if loc(w) = x

E.maxmo(E.EW(t), x) if loc(w) 6= x ∧ w 4x t

E.maxmo(E.cclose({w}) otherwise
1099

1100

Further, for any Explicit transition E w,e==⇒ E′ where w and e do not synchronise, if e is a1101

read then1102

E′.maxmo(E′.EW(t), x) =
{
w if loc(w) = x

E.maxmo(E.EW(t), x) otherwise
(20)1103

1104

and if e is a write or update then1105

E′.maxmo(E′.EW(t), x) =
{
e if loc(w) = x

E.maxmo(E.EW(t), x) otherwise
(21)1106

1107

Proof. We prove each in turn.1108

(Equation 18) Consider1109

E′.maxmo(E′.EW(t), x)1110

= (trans-rel)1111

E.maxmo(E′.EW(t), x)1112

= (trans-rel and defn of cclose)1113

E.maxmo(E.EW(t) ∪ E.cclose({w}), x)1114

= (see below)1115 {
E.maxmo(E.EW(t), x) if w 4x t

E.maxmo(E.cclose({w}), x) otherwise
1116

1117

This last step is a consequence of Lemma 20 and the fact that both E.EW(t) and E.cclose({w})1118

are complete.1119

(Equation 19) We first consider the case when x = loc(e). In this case

E′.maxmo(E′.EW(t), x) = e

AAA
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as required. If x 6= loc(e), then1120

E′.maxmo(E′.EW(t), x)1121

= (trans-rel)1122

E.maxmo(E′.EW(t), x)1123

= (trans-rel and defn of cclose)1124

E.maxmo(E.EW(t) ∪ E.cclose({w}) ∪ {e}, x)1125

= (x 6= loc(e) and Lemma 20)1126

E.maxmo(E.EW(t) ∪ E.cclose({w}), x)1127

= (see below)1128 {
E.maxmo(E.EW(t), x) if w 4x t

E.maxmo(E.cclose({w}), x) otherwise
1129

1130

Agin, this last step is a consequence of Lemma 20 and the fact that both E.EW(t) and1131

E.cclose({w}) are complete.1132

(Equation 20) We first consider the case when x = loc(e). In this case

E′.maxmo(E′.EW(t), x) = e

as required. If x 6= loc(e), then1133

E′.maxmo(E′.EW(t), x)1134

= (trans-rel)1135

E.maxmo(E′.EW(t), x)1136

= (trans-rel and defn of cclose)1137

E.maxmo(E.EW(t) ∪ {w} ∪ {e}, x)1138

= (because x 6= loc(e) and Lemma 20)1139

E.maxmo(E.EW(t), x)1140
1141

(Equation 21) The proof here is identical to that for Equation 20. J1142

We define a simulation relation R between a View state V = (writes, tview,mview, covered)1143

and an Explicit state E = (X, sb, rf,mo) to be the conjunction of the following properties.1144

Both executions contain the same set of writes:1145

V.writes = E.X ∩W (22)1146
1147

For all threads t and variables x,1148

V.tview(t, x) = E.maxmo(E.EW(t), x) (23)1149
1150

For all w ∈ writes and variables x,1151

V.mview(w, x) = E.maxmo(E.cclose({w}), x) (24)1152
1153

Both executions agree on the order of writes.1154

V.mo = E.mo (25)1155
1156

recall that V.mo = {(w,w′) | w,w′ ∈ V.writes ∧ tst(w) < tst(w′)}.1157
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The executions agree on the set of covered writes:1158

V.covered = E.covered (26)1159
1160

Our first lemma relates the viewfront and the observable writes of R-related states.1161

I Lemma 23. For any View state V and Explicit state E such that (V,E) ∈ R, and for all1162

threads t and locations x, V.OW(t, x) = E.OW(t, x).1163

Proof. First, observe that for all w such that loc(w) = x1164

tst(V.tviewt(x)) ≤ tst(w) ⇐⇒ (E.maxmo(E.EW(t), x), w) ∈ E.mo (27)1165
1166

But this is an immediate consequence of the fact that V.tview(t, x) = E.maxmo(E.EW(t), x)1167

and that E.mo = V.mo (both of these are consequences of R).1168

But now, because E.maxmo(E.EW(t), x) is mo-maximal among the set of encountered1169

writes, we have1170

(E.maxmo(E.EW(t), x), w) ∈ E.mo ⇐⇒ ∀w′ ∈ E.EW(t), x).(w,w′) /∈ E.mo (28)1171
1172

Now consider1173

w ∈ V.OW(t, x)1174

⇐⇒ (definition)1175

w ∈ V.writes ∧ loc(a) = x ∧ tst(V.tviewt(x)) ≤ tst(w)1176

⇐⇒ (by R)1177

w ∈ E.X ∩W ∧ loc(a) = x ∧ tst(V.tviewt(x)) ≤ tst(w)1178

⇐⇒ (28)1179

w ∈ E.X ∩W ∧ loc(a) = x ∧ ∀w′ ∈ E.EW(t), x).(w,w′) /∈ E.mo1180

⇐⇒ w ∈ E.OW(t, x)1181
1182

as required. J1183

In the preservation proof, we use the following stability properties:1184

I Lemma 24. For all E w,e==⇒ E′, every location x, and every thread t′ 6= tid(e)1185

E′.maxmo(E′.EW(t′), x) = E.maxmo(E.EW(t′), x) (29)1186
1187

and for every write w′ 6= e1188

E′.maxmo(E′.cclose({w′}), x) = E.maxmo(E.cclose({w}), x) (30)1189
1190

Further, for all V w,e
V ′, every location x, and every thread t′ 6= tid(e)1191

V ′.tview(t′, x) = V.tview(t′, x) (31)1192
1193

and for every write w′ 6= e1194

V ′.mview(w′, x) = V.mview(w′, x) (32)1195
1196

AAA
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I Lemma 25 (Mod-order agreement). For any View state1197

V = (writes, tview,mview, covered)1198

and Explicit state E = (X, sb, rf,mo) such that (V,E) ∈ R, and every thread t, write w and1199

variable x1200

tst(V.tview(t)(x)) < tst(V.mview(w)(x)) ⇐⇒ t 4x w1201
1202

Proof. We reason thusly1203

tst(V.tview(t)(x)) < tst(V.mview(w)(x)) ⇐⇒1204

tst(E.maxmo(E.EW(t), x)) < tst(E.maxmo(E.EW(t), x)) ⇐⇒ by 231205

t 4x w by 251206
1207

J1208

I Lemma 26 (View Mod Order). For any V w,e
t V
′ where e is a write or update, V ′.mo =1209

V.mo[w, (e, q, t)] where q is the fresh rational used to tag the operation in the View transition1210

relation.1211

Proof. The new write is added into mo immediately after the write w and before all1212

subsequent writes to the same variable. J1213

I Lemma 27 (R-preservation). For any View state1214

V = (writes, tview,mview, covered)1215

and Explicit state E = (X, sb, rf,mo) such that (V,E) ∈ R, and every View state V ′ =1216

(writes′, tview′,mview′, covered ′) such that V w,e
V ′, we have E w,e

E′ for some E′ and1217

(V ′, E′) ∈ R.1218

Proof. We proceed by cases on the type of the operation e and whether or not the operation1219

is synchronising. In what follows, let t = tid(e).1220

Case 1. e is of the form rd(x, n). Let E = (X ′, sb′, rf ′,mo′) where1221

(X ′, sb′) = (X, sb) + e1222

rf′ = rf ∪ {(w, e)}1223

mo′ = mo1224
1225

The precondition of the View transition ensures that w ∈ V.OW(t, x), and thus by Lemma1226

23, we have w ∈ E.OW(t). Thus, we have E w,e
E′. It remains to show that (V ′, E′) ∈ R,1227

which we do by considering each of the equations in the definition of R in turn.1228

V ′.writes = V.writes by View trans-rel1229

= E.X ∩W by R1230

= E′.X ∩W by Explicit trans-rel1231
1232

We need to show that V ′.tview(t, x) = E′.maxmo(E′.EW(t), x). For all t′ 6= t, it is easy1233

to see that Equations 29 and 31 ensure that this property is preserved.1234
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Several cases remain. We discuss the first two. The remaning cases follow in a similar1235

way. In the first case, we assume the following1236

w, e synchronise (33)1237

loc(e) = x (34)1238

tst(V.tview(t)(x)) < tst(V.mview(w)(x)) (35)1239

(E.maxmo(E.EW(t), x), E.maxmo(E.cclose({w}), x)) ∈ E.mo (36)1240
1241

Note that by 25 the last two assumptions are equivalent. Then,1242

V ′.tview(t)(x) = (V.tview(t)⊗ V.mview(w))(x) by View trans-rel1243

= V.mview(w)(x) by hyp. and def of ⊗1244

= E.maxmo(E.cclose({w}), x) by R1245

= E′.maxmo(E′.EW(t), x) see below1246
1247

The last step is a consequence of the first, second, and fourth assumptions together with1248

Lemma 18.1249

In the second case, we assume1250

w, e synchronise (37)1251

loc(e) = x (38)1252

tst(V.mview(w)(x)) < tst(V.tview(t)(x)) (39)1253

(E.maxmo(E.cclose({w}), x), E.maxmo(E.EW(t), x)) ∈ E.mo (40)1254
1255

(The new hyptothesis differs from the previous in that we have changed the view that1256

supplies the latest write.) Note that by 25 the last two assumptions are equivalent. Then,1257

V ′.tview(t)(x) = (V.tview(t)⊗ V.mview(w))(x) by View trans-rel1258

= V.tview(t)(x) by hyp. and def of ⊗1259

= E.maxmo(E.EW(t), x) by R1260

= E′.maxmo(E′.EW(t), x) see below1261
1262

The last step is a consequence of the first, second, and fourth assumptions together with1263

Lemma 18.1264

We need to show that V ′.mview(w, x) = E′.maxmo(E′.cclose({w}), x) for all w. But1265

because e is a read we have1266

V ′.mview = V.mview1267

E′.cclose = E.cclose1268

E′.maxmo = E.maxmo1269
1270

so the preservation result follows immediately.1271

V ′.mo = V.mo by View trans-rel1272

= E.mo by R1273

= E′.mo by Explicit trans-rel1274
1275

AAA
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V ′.covered = V.covered by View trans-rel1276

= E.covered by R1277

= E′.covered by Explicit trans-rel1278
1279

Case 2. e is of the form wr(x, n). Let E = (X ′, sb′, rf ′,mo′) where1280

(X ′, sb′) = (X, sb) + e1281

rf′ = rf1282

mo′ = mo[w, e]1283
1284

The precondition of the View transition ensures that w ∈ V.OW(t, x), and thus by Lemma1285

23, we have w ∈ E.OW(t). Thus, we have E w,e
E′. It remains to show that (V ′, E′) ∈ R,1286

which we do by considering each of the equations in the definition of R in turn.1287

V ′.writes = V.writes ∪ {e} by View trans-rel1288

= (E.X ∩W) ∪ {e} by R1289

= E′.X ∩W by Explicit trans-rel1290
1291

If loc(e) 6= x then the thread view and mo restricted to x are unchanged. If loc(e) = x,
then E′.maxmo(E′.EW(t), x) = e and V ′.tview(t, x) = e so

E′.maxmo(E′.EW(t), x) = V ′.tview(t, x) = e

as required.1292

If loc(e) 6= x then the thread view and mo restricted to x are unchanged. Assume
loc(e) = x. For all w′ ∈ V ′.writes where w′ 6= e, then

E′.maxmo(E′.cclose(w), x) = E.maxmo(E.cclose(w), x)

so the property is preserved. In the final case,

E′.maxmo(E′.cclose(e), x) = E.maxmo(E.EW(t) ∪ {e}) = e

but V ′.mview(e, x) = e as required.1293

V ′.mo = V.mo[w, e] by Lemma 261294

= E.mo[w, e] by R1295

= E′.mo by Explicit trans-rel1296
1297

V ′.covered = V.covered by View trans-rel1298

= E.covered by R1299

= E′.covered by Explicit trans-rel1300
1301
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Case 3. e is of the form updRA(x,m, n). Let E = (X ′, sb′, rf ′,mo′) where1302

(X ′, sb′) = (X, sb) + e1303

rf′ = rf ∪ {(w, e)}1304

mo′ = mo[w, e]1305
1306

The precondition of the View transition ensures that w ∈ V.OW(t, x), and thus by Lemma1307

23, we have w ∈ E.OW(t). Thus, we have E w,e
E′. It remains to show that (V ′, E′) ∈ R,1308

which we do by considering each of the equations in the definition of R in turn.1309

The proof that (V ′, E′) ∈ R is essentially a combination of the proof for reads and writes.1310

V ′.writes = V.writes ∪ {e} by View trans-rel1311

= (E.X ∩W) ∪ {e} by R1312

= E′.X ∩W by Explicit trans-rel1313
1314

The proof here is the same as that for reads.1315

The proof here is the same as that for writes.1316

V ′.mo = V.mo[w, e] by Lemma 261317

= E.mo[w, e] by R1318

= E′.mo by Explicit trans-rel1319
1320

V ′.covered = V.covered ∪ {w} by View trans-rel1321

= E.covered ∪ {w} by R1322

= E′.covered by Explicit trans-rel1323
1324

J1325

Finally, we must prove that for every initial View state, there is an R-related initial1326

Explicit state.1327

I Lemma 28. For every initial state of the View semantics V0, there is an initial state of1328

the Explicit semantics E0 such that (V0, E0) ∈ R1329

Proof. Let V0 = (writes, tview,mview, covered). We let E0 = (X, sb, rf,mo), where 6
1330

X = writes (41)1331

sb = ∅ (42)1332

rf = ∅ (43)1333

mo = ∅ (44)1334
1335

We prove each property of the simulation relation in turn.1336

(22) This is immediate.1337

6 Recall that in our setting writes and X have the same type.
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(23) For all threads t and variables x, E.maxmo(E.EW(t), x) is the initialising write to x,1338

which is also the value of V.tview(t, x).1339

(24) Similarly to 23, for all writes w and variables x, E.cclose(w) and V.mview(w) is the1340

initialising write to x.1341

(25) This is immediate.1342

(26) This is immediate.1343

J1344
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