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Abstract

Concurrent programs are known to be complicated because synchronisation is required

amongst the processes in order to ensuresafety(nothing bad ever happens) andprogress

(something good eventually happens). Due to possible interference from other processes,

a straightforward rearrangement of statements within a process can lead to dramatic

changes in the behaviour of a program, even if the behaviour of the process executing

in isolation is unaltered. Verifying concurrent programs using informal arguments are

vi



usually unconvincing, which makes formal methods a necessity. However, formal proofs

can be challenging due to the complexity of concurrent programs. Furthermore, safety

and progress properties are proved using fundamentally different techniques. Within the

literature, safety has been given considerably more attention than progress.

One method of formally verifying a concurrent program is to develop the program,

then perform a post-hoc verification using one of the many available frameworks. How-

ever, this approach tends to be optimistic because the developed program seldom satisfies

its requirements. When a proof becomes difficult, it can be unclear whether the proof

technique or the program itself is at fault. Furthermore, following any modifications

to program code, a verification may need to be repeated from the beginning. An alter-

native approach is to develop a program using a verify-while-develop paradigm. Here,

one starts with a simple program together with the safety andprogress requirements

that need to be established. Each derivation step consists of a verification, followed by

introduction of new program code motivated using the proofsthemselves. Because a

program is developed side-by-side with its proof, the completed program satisfies the

original requirements.

Our point of departure for this thesis is the Feijen and van Gasteren method for de-

riving concurrent programs, which uses the logic of Owicki and Gries. Although Feijen

and van Gasteren derive several concurrent programs, because the Owicki-Gries logic

does not include a logic of progress, their derivations onlyconsider safety properties

formally. Progress is considered post-hoc to the derivation using informal arguments.

Furthermore, rules on how programs may be modified have not been presented, i.e., a

program may be arbitrarily modified and hence unspecified behaviours may be intro-

duced.

In this thesis, we develop a framework for developing concurrent programs in the

verify-while-develop paradigm. Our framework incorporates linear temporal logic, LTL,

and hence both safety and progress properties may be given full consideration. We exam-

ine foundational aspects of progress by formalising minimal progress, weak fairness and

strong fairness, which allow scheduler assumptions to be described. We formally define

progress terms such asindividual progress, individual deadlock, liveness, etc (which are

vii



properties of blocking programs) andwait-, lock-, andobstruction-freedom(which are

properties of non-blocking programs). Then, we explore theinter-relationships between

the various terms under the different fairness assumptions. Because LTL is known to

be difficult to work with directly, we incorporate the logic of Owicki-Gries (for proving

safety) and the leads-to relation from UNITY (for proving progress) within our frame-

work. Following the nomenclature of Feijen and van Gasteren, our techniques are kept

calculational, which aids derivation. We prove soundness of our framework by proving

theorems that relate our techniques to the LTL definitions. Furthermore, we introduce

several methods for proving progress using a well-founded relation, which keeps proofs

of progress scalable.

During program derivation, in order to ensure unspecified behaviour is not intro-

duced, it is also important to verify a refinement, i.e., showthat every behaviour of the

final (more complex) program is a possible behaviour of the abstract representation. To

facilitate this, we introduce the concept of an enforced property, which is a property

that the program code does not satisfy, but is required of thefinal program. Enforced

properties may be any LTL formula, and hence may represent both safety and progress

requirements. We formalise stepwise refinement of programswith enforced properties,

so that code is introduced in a manner that satisfies the enforced properties, yet refine-

ment of the original program is guaranteed. We present derivations of several concurrent

programs from the literature.

Keywords

concurrency, refinement, verification, derivation, safety, progress, liveness, formal meth-

ods, enforced properties, leads-to

Australian and New Zealand Standard Research Classifications

(ANZSRC)

080203 100%
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1
Introduction

The complexity of a concurrent program can grow exponentially as the number of par-

allel processes increases. Due to possible interference from other processes, slight alter-

ations to the program code can change the behaviour of concurrent programs dramati-

cally. Informal arguments to validate the correctness of a concurrent program are seldom

convincing and traditional testing methods are usually inadequate.

Formal methods provide a basis by which the validity of programs can be made using

sound mathematical arguments. According to Manna and Pnueli [MP91a], using formal

methods to validate programs consists of two distinct but equally challenging thought

processes: one must describe the appropriate set of formal assertions (predicates on the

program state) for the problem at hand, then use these assertions to establish a set of

proof obligations which can be verified.

1



2 INTRODUCTION

1.1 Formal methods for concurrency

The two requirements that concurrent programs need to satisfy aresafety(the program

does not do anything bad) andliveness(the program does something good) [Lam77].

This distinction has developed extensively over time and has been expressed via a num-

ber of different viewpoints [Kin94]. For instance, Alpern and Schneider [AS85, AS87]

show us that topologically, safety properties areclosedsets and liveness properties are

densesets.

One of the first coherent methods of formally proving properties of sequential pro-

grams was using the invariant method of Floyd [Flo67]. Later, Hoare presented a method

of proving such invariants axiomatically [Hoa69]. Assertions that represent the desired

correctness criteria are used to annotate a program. Dijkstra then introducedpredicate

transformerswith which one could devise and prove assertions in a more calculational

manner [Dij76]. Both Hoare-logic and predicate transformers were initially developed

to prove properties of sequential programs, and hence suitable extensions are necessary

in the context of concurrency. A variety of formalisms may beused to reason about the

safety properties of concurrent algorithms [OG76, CM88, LT89, Bac89a, Lam94].

The basis for proving liveness properties is temporal logic[Pnu77, MP95], which is

an extension to classical first order logic that allows one toreason about properties that

change with time. Two main forms of temporal logic exist: linear time temporal logic

(LTL) and computational tree logic (CTL) [BAMP81]. The viewtaken by LTL is that for

each moment, there is exactly one possible future, whereas CTL allows time to be split

into multiple paths representing the different possible futures. Lamport presents a com-

parison of the two views and supports the use of LTL over CTL inconcurrent systems

[Lam80]. The claim is that the expressive power of the two methods are incompara-

ble, and hence there is no advantage gained by using the more complex CTL. Emerson

and Halpern, however, challenge this view, pointing out thedeficiencies in the argument

presented by Lamport [Lam80], and claim that although LTL isgenerally adequate for

verification of concurrent programs, CTL does have applications in systems where the

existence of alternative paths need to be acknowledged [EH86].
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Discussions of such notions of time remain outside the scopeof this thesis. For the

most part, the sorts of liveness properties we are concernedwith are temporal ‘eventual-

ity’ properties, better known as progress properties. It turns out that just a subset of LTL

is enough to prove such properties.

There are a wide variety of frameworks that allow formal reasoning about concurrent

programs. These may generally be classified asnon-compositionalor compositional

[dRdBH+01].

1.1.1 Non-compositional methods

A method is said to be non-compositional if a proof of a component cannot be performed

by considering the component in isolation, i.e., the proof requires complete knowledge

of the other components [dRdBH+01]. In this section we describe some of the more

popular methods.

UNITY. Developed by Chandy and Misra, UNITY aims to consider program develop-

ment with minimal assumptions on the target architecture [CM88]. Programs consist of

a collection of variable declarations and a finite non-emptyset of guarded commands.

Here, weak fairness is simplified to “each command is executed infinitely often”. A

UNITY program terminates if it reaches a fixed point. The theory in UNITY presents

an axiomatic definition of ‘leads-to’ which allows progressproperties known as ‘even-

tuality properties’ to be expressed without using temporallogic. However, one cannot

reason about a program’s control state easily and many existing theories for program de-

velopment and verification are not applicable [dRdBH+01]. Furthermore, it is not easy

to introduce operators such as sequential composition [SdR94].

TLA. Temporal logic of actions (TLA) is a body of work developed byLamport

[Lam94, Lam02] for the specification of systems. A specification consists of a set of

formulae that describe the safety and liveness properties.Each formula describes a state

transition by referring to variables of the current and nextstate and may contain tempo-

ral operators. Because each action is a formula, refinement may be expressed as logical
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implication.

Action systems. An important formalism is that of action systems [Bac89a, Bac92a,

Bac92b] developed by Back, Sere, et al. The model is similar to UNITY in that a

program consists of a non-terminating loop, where each iteration non-deterministically

chooses an enabled guarded atomic action, however, the theoretical background is quite

different. The idea is that when interleaving semantics is employed, the semantics of a

concurrent system is no different from a non-deterministicsequential program. Hence

one can use a sequential program to model a concurrent system. Semantics of action

systems are described in a lattice theoretical framework. Action systems have been

extended to fit many contexts such as reactive [Bac92b], component based [Ruk03],

distributed and shared memory [BS89].

I-O automata. Lynch and Vaandrager [LT89] developed the input-output (I-O) au-

tomata formalism as a tool for modelling concurrent and distributed discrete event sys-

tems. This work has been extended to model continuous systems [NLV03]. Each event

consists of an atomic effect that occurs takes place if the program state satisfies its pre-

condition. Refinement in the context of I-O automata is described in [LV95]. I-O au-

tomata have been used to verify non-blocking algorithms [CG05, DGLM04, Doh03].

Modular approach. Shankar and Lam [Sha93, LS92], present another state transi-

tion model with automata-based syntactic constructs, but with a semantics that follows

UNITY. Systems are represented as sets of state variables, initial conditions, fairness re-

quirements, and events. The main difference with UNITY is that the modular approach

may specify different fairness assumptions on different actions. The modular approach

was developed to reason about distributed protocols.

1.1.2 Compositional methods

Composition consists of building a system out of several smaller components so that

the combined effect of the components satisfies the requirements of the system [FP78].
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Such methods are necessary for developing larger and more complex systems, however,

compositional methods do not necessarily reduce the complexity of a problem.

A component is treated as a ‘black box’ and each component is described by its

specification only. This means the composition of the components need not refer to the

program text. Properties of the component are described by its specification. A variety

of terms like rely-guarantee [Jon83], assumption-commitment [MC81], and assumption-

guarantee [JT96] have been used to describe compositional reasoning. Collette and

Knapp [CK97] extend UNITY to a compositional framework.

Abadi and Lamport [AL93] describe the conditions under which specifications can

be composed. The theory is presented entirely at a semantic level using transition traces,

which makes the work applicable to a number of other approaches. Thenon-cyclical

composition principleis stated which describes when the composition of two specifica-

tions implements a program. Abadi and Lamport also describehow programs can be

constructed in a compositional manner [AL93, AL95].

1.2 Progress-based program derivation

The differences between Hoare and Dijkstra’s methods are more than just superficial.

As Dijkstra showed, the calculational nature of predicate transformers is not only useful

for verification, but also in the context of program derivation [Dij76]. Essentially, this

gave rise to what is now known as the verify-while-develop approach, where, instead of

developing a program then proving it correct it post-hoc, one aims to produce a correct

program along with its proof to begin with.

While formally verifying concurrent programs has been the topic of much research,

deriving them has not. Even less work has been put into deriving concurrent programs

in a way that gives equal consideration to both progress and safety requirements (as

opposed to derivation that is based only on safety requirements). This thesis contributes

to this goal by defining a logic of safety and progress. We alsowe apply this knowledge

to address methodological questions of how to incorporate the logic into a design method

for concurrent program derivation.
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The point of departure for this thesis is the theory of Owickiand Gries [OG76, Dij82,

FvG99], a theory that can only be used to reason about safety requirements. Two reasons

recommend this point of departure. The first is that this theory is attractively simple.

Proofs are carried out using thewlp predicate transformer and Hoare-style assertions

rather than some other programming model such as a Petri net,I/O automaton, or process

algebra. We see this as an important advantage for program design, where so much of

the practicality of model-based reasoning is dependant on the transparency, ease and

reliability of the translation of the model into code. The second reason for using the

theory is that it has already been used as an effective methodof concurrent program

derivation, although only safety requirements are formally considered [FvG99].

The attitude of Feijen and van Gasteren is instructive in this regard, as it represents a

deliberate decision to eschew the expressiveness of temporal logic in favour of the sim-

plicity of Owicki and Gries. The benefit of doing so is a collection of design heuristics

that are attractively simple to use and have been shown to be effective. The cost of the

decision is that reasoning about progress requirements becomes both informal and post

hoc. It is a welcome outcome that so much can be achieved in this way, yet it remains true

that satisfaction of progress requirements using this approach is in an important sense

left to chance. The pragmatic attitude of Feijen and van Gasteren, together with the lim-

itation of the theory of Owicki and Gries, sets the methodological agenda for this thesis.

That is, the thesis describes how to extend the theory of Owicki and Gries with a logic of

progress that, so far as possible, retains the simplicity ofthe original theory while at the

same time provides a logic in which to formalise and prove progress requirements. This

work then is a prolegomenon to our larger goal, which is a method of program derivation

that assigns equal consideration to both progress and safety requirements.

1.3 Formalising progress properties

Unlike sequential programs where the primary progress concern is ensuring termina-

tion, concurrent programs may exhibit a wide range of progress properties. Blocking
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programs may exhibit properties such as deadlock, livelockand starvation, while non-

blocking programs may be classified according to their progress properties as wait, lock,

or obstruction-free. These terms are seldom defined formally, and hence their definitions

are subject to interpretation.

We formalise several of the progress properties concurrentprograms may exhibit in

our framework. Formalisation of such terms has the advantage that they are precise. To

show that a property holds, one must prove that it satisfies the definition. Furthermore,

when a property does not hold, via the proof obligations generated, one is able to identify

the types of modifications necessary for the program to satisfy the given property.

It is widely accepted that the progress properties of concurrent programs are inter-

related, however, the precise relationships are difficult to judge, especially when fairness

is taken into consideration. By defining the progress properties formally, we are able to

prove that the inter-relationships hold, e.g., in a non-blocking context wait-freedom is

shown to imply lock-freedom, but not vice versa.

1.4 Some notation

For a set finite setS, we usesize(S) to denote thecardinalityof S. Thecross productof

two setsSandT is denotedS× T, and amappingwithin S× T is denoteds 7→ t, where

s∈ Sandt ∈ T. A relation RbetweenSandT is a set of mappingsR⊆ S× T. We use

dom(R) andran(R) to denote thedomainandrangeof R. A function Fis a relation such

that (∀x:S; y1,y2:T x 7→ y1 ∈ F ∧ x 7→ y2 ∈ F ⇒ y1 = y2). A total function Ffrom S to

T, denotedF: S→ T, is a function such thatdom(F) = Sholds, and apartial function

F from S to T, denotedF: S 7→ T, is a function such thatdom(F) ⊆ S holds. We use

S⊳R, R⊲S, S−⊳RandR−⊲Sto denote thedomain restriction, range restriction, domain

anti-restriction, andrange anti-restrictionof relationR to setS, respectively. Given a set

of mappingsM, we useR⊕ M, to denoteR overriddenby the mappings inM.

A possibly infinitesequenceof typeT, denotedseq(T) is a function of typeN 7→ T

where for anys∈ seq(T),

(∀i,j:N i ≤ j ∧ j ∈ dom(s) ⇒ i ∈ dom(s)).



8 INTRODUCTION

Sequences is infinite if dom(s) = N and finite otherwise. We usea for sequence con-

catenation, i.e., provideds is finite,sa t is a new sequence consisting of the elements of

s followed by the elements oft. We use〈〉 to denote the empty sequence,〈a0, a1, . . . , an〉

to denote a finite sequence and〈a0, a1, . . . 〉 to denote an infinite sequence.

For a finite sequences, we letsize(s) = size(dom(s)) = max(s) + 1 be the number

of elements ins, last(s) be the last element ins and front(s) be a sequence such that

s = front(s) a 〈last(s)〉. For a (possibly infinite) non-empty sequencet, we lethead(t)

be the first element oft andtail(t) be the rest oft, i.e.,t = 〈head(t)〉a tail(t).

1.5 Summary

In Chapter 2 we present a syntax and semantics of a framework for representing con-

current programs. Programs are written using Dijkstra’s Guarded Command Language

and consists of a number of sequential statements that are executed in parallel. Program

counters are incorporated to the program in order to encode the control state, which is

necessary for our progress logic. We provide an operationalsemantics to reason about

programs at a trace level, which is important to ensure soundness of the model. Using

traces, we incorporate LTL into the framework.

In Chapter 3, we formalise weak and strong fairness, prove that strong fairness im-

plies weak fairness, and compare our definitions to those of Lamport. We also formalise

a number of progress properties of blocking and non-blocking programs, and prove the

inter-relationship among the different properties under various fairness assumptions.

In Chapter 4, we present calculation methods for verifying safety and progress. We

provide a weakest (liberal) precondition semantics to allow calculational proofs that

facilitate program derivation. The weakest (liberal) precondition is related to the op-

erational semantics. We present a logic for proving safety and progress by providing

definitions using LTL and the trace-based semantics. Then, we present methods for

proving safety and progress using predicate transformers,i.e., without resorting to LTL

reasoning. Our theorems for proving progress are able to cope with strong and minimal
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fairness. Further lemmas for proving progress using well-founded relations are provided

with a focus on program derivation.

In Chapter 5 we provide several example progress verifications of both blocking

and non-blocking programs. We verify the initialisation protocol [Mis91] under weak

fairness and minimal progress, and also consider a proof of aprogram that satisfies its

safety property, but not its progress property. As ann-process example, we present a

progress verification the bakery algorithm [Lam74]. We alsopresent verifications of two

non-blocking examples: a program that is lock free but not wait free, and a program that

is obstruction free but not lock free.

In Chapter 6, using the trace semantics from Chapter 2, we formalise the derivation

techniques of Feijen/van Gasteren and Dongol/Mooij and relate their methods to refine-

ment. Arbitrary program modifications are disallowed by requiring that each program

modification be justified via lemmas that ensure the originalprogram is refined. Cen-

tral to this technique is the formalisation of queried properties, which are redefined as

enforced properties. Enforced properties may represent both safety and progress, and

restrict the traces of the program under consideration to those that satisfied the enforced

property.

In Chapter 7 we used the techniques from Chapters 4 and 6 to derive the initialisation

protocol and three mutual exclusion algorithms: the safe sluice algorithm, Peterson’s

algorithm and Dekker’s algorithm.
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2
The Programming Model

In this chapter, we present the programming model that we have developed. We provide a

platform for the formal verification and derivation of concurrent programs, paying equal

attention to both safety and progress properties of the program. We base our model

on Dijkstra’s Guarded Command Language (GCL). Because the GCL was developed to

model sequential programs, in the context of concurrent programs, we are required to

implement the following changes:

• change the meaning ofif so that it blocks when all guards arefalse(as opposed to

aborting),

• introduce atomicity brackets (to allow greater control of the atomicity),

• define labels (to allow description of the control state), and

• introduce program counters (to allow reasoning about the control state).

11
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We provide an operational semantics for the language to facilitate characterisation of

state traces that specify a program’s behaviour. The usefulness of this is highlighted in

Chapter 4 where we prove soundness of the logic in terms of trace-theoretic foundations.

This chapter is structured as follows. Section 2.1 describes the syntax and seman-

tics of unlabelled statements; Section 2.2 gives an overview of atomicity brackets; and

Section 2.3 describes the syntax and semantics of labelled statements, as well as the

extensions necessary to reason about the control state. In Section 2.4, we describe the

concurrent programming model; and in Section 2.5, we define LTL within our frame-

work.

Contributions. This chapter is mainly based on work done in collaboration with Doug

Goldson and Ian Hayes [DG06, DH07]. The operational semantics of the programming

model (Sections 2.1.2 and 2.3.3) is from [DH07]. The conceptof atomicity brackets

(Section 2.2) is well known, but the placement of brackets around guard evaluations

is from [DG06]. Sections 2.3.1, 2.3.2 and 4.1.2 which facilitate reasoning about pro-

gram control is from Dongol and Goldson [DG06], while the operational semantics

(Section 2.3.3) and the formalisation of the execution model (Section 2.4.2) is from

Dongol and Hayes [DH07]. We use the operational semantics todistinguish between

concepts such as divergence, non-termination, guards, andtermination. We also show

that UNITY theorems for proving leads-to are actually more general properties of LTL

(Section 2.5.2).

2.1 A basic programming model

We present the syntax of the programming model in Section 2.1.1, and the operational

semantics in Sections 2.1.2.

2.1.1 Syntax of unlabelled statements

Following the nomenclature of Feijen and van Gasteren [FvG99], our programming no-

tation is based on the language of guarded commands [Dij76].
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Definition 2.1 (Unlabelled statement). Let x be a vector of distinct variables;E be a

vector of expressions that are assignment compatible withx; V be a vector of non-empty

set-valued expressions where the type of the elements ofV are assignment compatible

with x andx is not free inV; and B, Bu be Boolean expressions.

US ::= abort | skip | x := E | x :∈ V | US1; US2 | IF | DO

IF =̂ if []u Bu → USu fi

DO =̂ do B → US od

The syntax of expressions is standard, and hence, we do not present the details here. The

unlabelled statement “abort” may terminate in any state, or may never terminate, “skip”

does not nothing, “x := E” is the multiple assignmentthat simultaneously assignsEu to

variablexu for eachu ∈ dom(x), and “x :∈ V” is the non-deterministic assignmentthat

assigns an element fromV to x. Execution ofUS1; US2 (thesequential compositionof

US1 andUS2) consists of execution ofUS1 followed byUS2. Execution of anIF consists

of evaluation of guardsB1, B2, . . . , Bn, followed by execution ofUSu if Bu evaluates to

true. If two or more guards evaluate totrue, then one of the branches is chosen non-

deterministically. If all guards evaluate tofalse, the IF blocks, which is in contrast to

the semantics of Dijkstra where theIF is equivalent toabort when all guards evaluate to

false[Dij76]. Unlabelled statementDO forms the standard looping construct.

2.1.2 Operational semantics

The values of the variables in a program define the program’s current data state. We

define astate spaceasΣVAR =̂ VAR→ VAL whereVARis a set of variables andVAL a

set of values. We leave out the subscript ifVAR is clear from the context. Astateis a

member ofΣ. A predicateis a member of the setP Σ =̂ Σ → B that maps each state to

trueor false.

To formalise our operational understanding of the language, we provide an opera-

tional semantics. In this thesis, we assume that each expression is well-defined. Expres-

sion evaluation is represented by the function

eval: Σ → (Expr→ VAL)
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that maps each expression to the value of the expression in the given state. To evaluate a

sequence of expressions, we may use the function

map: (A → B) × seq(A) → seq(B)

which returns a sequence obtained by applying the given function to each element in the

given sequence.

Execution of an unlabelled statement is represented by theunlabelled statement exe-

cutionrelation

us
−→: (US× Σ) ↔ (US× Σ)

which is the least relation that satisfies the rules in Fig. 2.1. Our definition of
us

−→ uses

a small-step semantics [Plo04]. For vectorsx, E, we usex 7→ E to denote the mapping

{x1 7→ E1, . . . , xm 7→ Em}, and⊕ for the overrideoperator, wheref ⊕ g denotes the

mappingf over-ridden by mappingg, e.g.,{x1 7→ 10, x2 7→ 20, x3 7→ 30} ⊕ {x1 7→

100, x3 7→ 300} = {x1 7→ 100, x2 7→ 20, x3 7→ 300}.

Given thatx has typeT, the operational semantics is given below.

u-abort
(abort, σ)

us
−→ (abort, σ′)

asgn
e = map(eval.σ, E)

(x := E, σ)
us
−→ (skip, σ ⊕ {x 7→ e})

seq-I
(US1, σ)

us
−→ (US′

1, σ
′)

(US1; US2, σ)
us
−→ (US′

1; US2, σ
′)

seq-II
(skip; US, σ)

us
−→ (US, σ)

non-det
v = eval.σ.V e∈ v

(x :∈ V, σ)
us
−→ (skip, σ ⊕ {x 7→ e})

IF
eval.σ.Bu

(IF , σ)
us
−→ (USu, σ)

DO-loop
eval.σ.B

(DO, σ)
us
−→ (US; DO, σ)

DO-exit
eval.σ.(¬B)

(DO, σ)
us
−→ (skip, σ)

FIGURE 2.1: Operational semantics of unlabelled statements

Execution ofabort results in an arbitrary post state. Multiple assignmentx := E is

executed according to ruleasgn where, for eachu ∈ dom(E), given that each expression

Eu in stateσ valuates to valueeu, the state following the multiple assignment maps each
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variablexu to eu. Sequential compositionUS1; US2 executesUS1 first using ruleseq-I,

but if US1 is skip, uses ruleseq-II so thatUS2 may be executed. Notice that ifUS1

is skip, seq-I cannot be used because(skip, σ) 6∈ dom(
us

−→). A non-deterministic

assignment is executed using rulenon-det, whereV is evaluated inσ to obtainv, thenx

is mapped to an element, saye, of v. Unlabelled statementIF is executed according to

IF whereUSu is executed ifBu evaluates totrue. Notice that no rule has been defined for

the case where all guards inIF evaluate tofalsebecause the program does not make a

transition, i.e., theIF blocks. For aDO, if B evaluates totrue, we executeUS followed

by DO, otherwise theDO terminates.

An infinite execution of an unlabelled statement is defined below.

Definition 2.2 (Non-termination). Let US be an unlabelled statement andσ be a state.

Thenon-terminationof (US, σ) is given by

(US, σ)
us ∞
−→ =̂ (∃s:seq(US×Σ) dom(s) = N ∧ s0 = (US, σ) ∧ (∀i:dom(s) si

us
−→ si+1)).

In order to determine whether or not execution of an unlabelled statement is possible,

we find the concept of aguard useful. We use
us ∗
−→ to denote thereflexive transitive

closureof
us

−→.

Definition 2.3 (Guard). Theguardof an unlabelled statement US, denoted g.US, is the

weakest predicate that needs to hold for execution of US to bepossible. For a stateσ,

the guard is defined as follows:

(g.US).σ =̂ (∃σ′:Σ (US, σ)
us ∗
−→ (skip, σ′)) ∨ (US, σ)

us ∞
−→ .

When only considering safety properties, Feijen and van Gasteren have already de-

monstrated that knowledge of partial correctness is enough[FvG99]. However, when

reasoning about progress (Chapter 4) and refinement (Chapter 6), one is also required to

reason about termination.

Definition 2.4 (Termination). For an unlabelled statement US, theterminationof US,

denoted t.US, is the weakest predicate that guarantees termination ofUS. For a stateσ,

termination is defined as follows:

(t.US).σ =̂ ¬((US, σ)
us ∞
−→).
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Note that by Lemma 4.5, predicatesg.US and t.US may be calculated usingpredicate

transformers.

2.2 Atomicity brackets

An atomic statementis a statement whose execution results in a single update of the

state of the whole program. The point between two consecutive atomic statements is

known as acontrol pointwhich is a point at which interference may occur. Program exe-

cution follows aninterleaving semanticsin which the atomic statements are interleaved

with each other. This essentially reduces a concurrent program to a non-deterministic se-

quential program [MP92] which is also the fundamental idea behind the execution model

in action systems [Bac89a]. Note that any two statements that do not conflict may be

modelled using interleaving semantics even if the timing ofthe two statements overlap

[FvG99].

To allow finer control over the atomicity of statements, we use pairs ofatomicity

brackets‘〈’ and ‘〉’. That is, given any statementS, execution of statement〈S〉 takes place

atomically and eliminates all points of interference withinS. We refer to such a statement

as acoarse-grained atomic statement. We assume thatskip, multiple assignment and

non-deterministic assignment statements are atomic. Hence, the following hold:

〈skip〉 = skip

〈x := E〉 = x := E

〈x :∈ V〉 = x :∈ V.

We take the view that an atomic statement that blocks partwaythrough its execution

is semantically equivalent to blocking at the start. Implementation of such a statement is

possible usingback-tracking[Nel89].

Atomicity brackets may also include guard evaluations. Forexample, in statement

if 〈B1 → US1〉 []〈B2 → US2〉 fi, evaluation of guardsB1 andB2, and execution of either

statementUS1 or US2 (depending on which guard holds) takes place atomically. We

point out the awkward nature of our notation as the pair of atomicity brackets suggest
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two atomic guard evaluations, however, this is not the case and guard evaluation takes

place atomically. A more general form of statementIF is:

if []u 〈Bu → USu〉 LSu fi

where all guardsB1, . . . , Bn are evaluated atomically, and depending on whichBu holds,

USu is executed atomically with the guard evaluation. After execution ofUSu control is

transferred just beforeLSu. Thus, there is no point of interleaving between evaluationof

Bu and execution ofUSu. Similarly, a more general form of statementDO is:

do 〈B → US〉 LS1 od

where evaluation ofB (and execution ofUS if B holds) takes place atomically at every

iteration of the loop.

An atomic execution of an unlabelled statementS may either block, terminate or

not-terminate, and a single statement may exhibit all threebehaviours. For example,

consider the following statement:

S =̂ 〈 if b → skip fi ;

if true→ skip

[] true→ abort

fi 〉.

If ¬b holds, then statementSblocks. Otherwise, execution ofSmay either execute the

skip, in which caseS terminates; or executeabort, in which caseS may or may not

terminate.

2.3 Labelled statements

In this section, we extend the model described in Section 2.1and provide a framework

that allows full representation of program control. Due to the presence of atomicity

brackets, unlabelled statements re-appear in our programs, and thus the theory in Sec-

tion 2.1 is re-used. We describe the syntax of labelled statements in Section 2.3.1 and a

method for modelling program counters in Section 2.3.2. In Sections 2.3.3 we give the

operational semantics of labelled statements.
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2.3.1 Syntax

To facilitate referencing of the control points, we assign auniquelabel to each atomic

statement. We let the type of a label bePC. Using labels to identify atomicity has

been also been suggested in formalisms such as +CAL [Lam06],and with extensions to

Event-B [EB08].

Definition 2.5 (Labelled statement). Let B, Bu be Boolean expressions;x be a vector of

variables; US, USu be unlabelled statements; and i, j, k, ku be labels.

LS ::= i: abort | i: 〈US〉 j: | LS1; LS2 | IFL | DOL | x ·[[LS1]]

IFL =̂ i: if []u 〈Bu → USu〉 ku: LSu fi j:

DOL =̂ i: do 〈B → US〉 k: LS1 od j:

When we writei: LS1 j:, we mean that the initial and final labels ofLS1 are i and j,

respectively. We make the labels explicit when they are unclear from the context. Note

that the final label of eachLSu in IFL is j and the final label ofLS1 in DOL is i. The

labelled guard evaluation statement ofIFL may be referred to explicitly using

grd(IFL) =̂ i: []u (〈Bu → USu〉 ku: ).

Similarly, the guard evaluation ofDOL may be referred to using:

grd(DOL) =̂ i: (〈B → US〉 k: []〈¬B → skip〉 j: ).

For the sequential compositionLS1; LS2 we require the final label ofLS1 to be equal to

the initial label ofLS2, otherwise the sequential composition is not well-formed.Further-

more, we usei: LS1; j: LS2 k: as shorthand fori: LS1 j: ; j: LS2 k:. For convenience, we

use∗[ LS1 ] =̂ do true → LS1 od to denote an infinite execution of labelled statement

LS1. The statementx ·[[LS1]] denotes the statementLS1 with its frameextended by vector

of variablesx, i.e., it behaves asLS1, but in addition, may modifyx (cf [Mor94]). Its

purpose is to allow fresh variables to be introduced to a program during the derivation

(see Chapter 6).

We define the function

labels: LS→ PC
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that takes a labelled statement as input and returns the set of all labels of the statement

except its final label. For instance,

labels(i: 〈US〉; j: 〈US2〉 k: ) = labels(i: 〈US〉 j: )∪ labels(j: 〈US2〉 k: ) = {i, j}.

Thus, for every statementi: LS1 j:, we requirej 6∈ labels(i: LS1 j: ).

2.3.2 Modelling program counters

We will be using labelled statements in a concurrent setting, where we think of labelled

statements as being executed by theprocessesof a program. We let the type of a process

identifier bePROC.

There are two ways of using the additional information that labelled statements pro-

vide. One way is to introduce newcontrol predicatessuch asat(p, i) to express the

proposition that ‘control in processp is at the atomic statement labelledi’ [Lam87,

Sch97]. A cost of this approach is that new axioms that capture the intended inter-

pretation of control predicates must be introduced. Lamport [Lam87], and Alpern and

Schneider [AS89] present axioms that express the following:

(A1) Each process has exactly one active control point.

(A2) Execution of an atomic statement in a process differentfrom p does not change

the active control point in processp.

The desire to make a conservative extension to the theory of Owicki and Gries has

led us to use auxiliary variables to reason about the controlstate. Consequently, we

formalise a program’s control state by introducing an auxiliary variablepcp for each

processp in a way that models its ‘program counter’, i.e., the value ofthis variable

indicates the active control point in the process (A1), which is the label of the next

atomic statement to be executed. Program counterpcp must be updated at every atomic

statement inp in a way that assignspcp the final label of that statement. This is done by

superimposing an auxiliary assignment topcp on every atomic statement inp (A2).
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Because every atomic statement in processp updatespcp, explicitly mentioning up-

dates topcp unnecessarily adds clutter to our programs. Hence, we follow the convention

that execution of each statement in processp implicitly updatespcp to reflect the change

in control state. Furthermore, we add the restriction thatpcp may not appear in any state-

ment. We reserve a special labelτ to be the label that denotes termination of a process,

i.e., if pcp = τ for any processp, thenp has terminated (does not execute any more

statements).

2.3.3 Operational semantics

When defining an operational semantics, an identity statement for sequential composi-

tion can be useful. However, we are unable to useskip as the identity because it has

the property of updating the program counter. Hence, we introduce statementid in our

system with the following restrictions:

• id is the identity of sequential composition, i.e.,id; LS1 = LS1 = LS1; id for any

labelled statementLS1,

• the label before and afterid are the same, and

• id is only used to define the operational semantics.

Providing an operational semantics for our new programmingmodel is complicated

because we allow atomicity brackets around arbitrary unlabelled statements. Due to the

interleaving semantics, if a processp executes a non-terminating atomic statement, no

other process is able to execute becausep never reaches a new control point. Yet, the

system is not totally deadlocked becausep continues to execute and furthermore, there

may be other enabled processes in the system (that are unableto execute). Thus, if a non-

terminating atomic statement is executed, we say the program is diverged. In order to

distinguish divergent behaviour, we introduce a special state,↑, known as thedivergent

stateand define

Σ↑ =̂ Σ ∪ {↑}.
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Because labelled statements are defined in terms of unlabelled statements, we first pre-

sent a semantics for the atomic execution of an unlabelled statement. We define

t
−→: (US× Σ) ↔ Σ↑

to be the least relation that satisfies the rules in Fig. 2.2. We assumeσ, σ′ ∈ Σ.

term
(US, σ)

us ∗
−→ (skip, σ′)

(US, σ)
t

−→ σ′

diverge
(US, σ)

us ∞
−→

(US, σ)
t

−→ ↑

FIGURE 2.2: Atomic statement execution

A terminating execution of unlabelled statementUSuses ruleterm, where given that

the reflexive transitive closure of
us

−→ results in(skip, σ′), we obtain the stateσ′. A

divergent execution of(US, σ) uses rulediverge, which results in the divergent state

↑. Labelled statements are executed using the family oflabelled statement execution

relations

ls
−→: PROC→ ((LS× Σ) ↔ (LS× Σ↑))

which is the least relation that satisfies the rules in Figs. 2.3 and 2.4. We assumeσ, σ′ ∈

Σ. For processp, relation
ls

−→p represents a single step of execution inp.

We provide the operational semantics for labelled atomic statements in Fig. 2.3. Ex-

ecution ofabort can generate both finite (abort-t), and infinite (abort-nt) sequences

of arbitrary states. Note thatabort may also be viewed as an atomic statement, in

which case execution ofi: abort diverges. Thus,i: abort generates terminating, non-

terminating, and divergent behaviour. Terminating and diverging executions ofi: 〈US〉 j:

are described by rulesCG-t andCG-d, respectively. Similarly, execution of a guard

evaluation statement is described byGE-t andGE-d. Given that guardBu evaluates to

true, the corresponding unlabelled statementUSu is executed and the program counter

of processp is updated toku. Note thatpcp = i must hold prior to executing atomic

statementpi.

The rules for non-atomic labelled statements with empty frames are straightforward

and are presented in Fig. 2.4, where rules are provided for (blocking) conditional state-

ments (IF-t, IF-d), sequential composition (seq-I-t, seq-I-d, seq-II) and iteration (DO-

I-t, DO-I-d, DO-II).
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abort-t
(i: abort, σ)

ls
−→p (id, σ′)

abort-nt
(i: abort, σ)

ls
−→p (i: abort, σ′)

CG-t
pi = i: 〈US〉 j: σ.pcp = i (US, σ)

t
−→ σ′

(pi , σ)
ls

−→p (id, σ′ ⊕ {pcp 7→ j})

CG-d
pi = i: 〈US〉 j: σ.pcp = i (US, σ)

t
−→ ↑

(pi , σ)
ls

−→p ( , ↑)

GE-t
pi = i: []u (〈Bu → USu〉 ku: ) σ.pcp = i evalσ(Bu) (USu, σ)

t
−→ σ′

(pi , σ)
ls

−→p (id, σ′ ⊕ {pcp 7→ ku})

GE-d
pi = i: []u (〈Bu → USu〉 ku: ) σ.pcp = i evalσ(Bu) (USu, σ)

t
−→ ↑

(pi , σ)
ls

−→p ( , ↑)

FIGURE 2.3: Labelled atomic statements with empty frames

IF-t
(grd(IFL), σ)

ls
−→p (id, σ′) σ′.pcp = ku

(IFL, σ)
ls

−→p (LSu, σ
′)

IF-d
(grd(IFL), σ)

ls
−→p ( , ↑)

(IFL, σ)
ls

−→p ( , ↑)

seq-I-t
(LS1, σ)

ls
−→p (LS′

1, σ
′)

(LS1; LS2, σ)
ls

−→p (LS′
1; LS2, σ

′)
seq-I-d

(LS1, σ)
ls

−→p ( , ↑)

(LS1; LS2, σ)
ls

−→p ( , ↑)

seq-II
(LS2, σ)

ls
−→p (LS′

2, σ
′)

(id; LS2, σ)
ls

−→p (LS′
2, σ

′)
DO-I-t

(grd(DOL), σ)
ls

−→p (id, σ′) σ′.pcp = k

(DOL, σ)
ls

−→p (LS1; DOL, σ
′)

DO-I-d
(grd(DOL), σ)

ls
−→p ( , ↑)

(DOL, σ)
ls

−→p ( , ↑)
DO-II

(grd(DOL), σ)
ls

−→p (id, σ′) σ′.pcp = j

(DOL, σ)
ls

−→p (id, σ)

FIGURE 2.4: Labelled non-atomic statements with empty frames

Execution of labelled statements with non-empty frames aredescribed in Fig. 2.5.

Execution ofx ·[[id]] is equivalent to execution ofid (rule fr-I). For any labelled statement

LS1 6= id with a non-empty frame, sayx, if LS1, diverges, thenx ·[[LS1]] diverges (rule

fr-II-d). Otherwise, execution ofx ·[[LS1]] consists of an atomic execution ofLS1 followed

by a non-deterministic update tox (rule fr-II-t).
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Given thatx has typeT, the operational semantics is given below.

fr-I
(LS, σ)

ls
−→p (LS′, σ′)

(x ·[[id]]; LS, σ)
ls

−→p (LS′, σ′)
fr-II-d

(LS1, σ)
ls

−→p ( , ↑)

(x ·[[LS1]], σ)
ls

−→p ( , ↑)

fr-II-t
(LS1, σ)

ls
−→p (LS′

1, σ
′) (x :∈ T, σ′)

us
−→ (skip, σ′′)

(x ·[[LS1]], σ)
ls

−→p (x ·[[LS′
1]], σ

′′)

FIGURE 2.5: Labelled statements with a non-empty frame

Execution of a labelled statement diverges if some atomic part of the labelled state-

ment diverges.

Definition 2.6 (Divergence). Let LS1 be a labelled statement in process p andσ be a

state. Thedivergenceof (LS1, σ) is given by

diverges(LS1, σ) ≡ (LS1, σ)
ls ∗
−→p ( , ↑)

Execution of a labelled statement is non-terminating if thestatement diverges or if the

labelled statement itself is non-terminating.

Definition 2.7 (Non-termination). Let LS1 be a labelled statement andσ be a state. The

non-terminationof (LS1, σ) is given by

(LS1, σ)
ls ∞
−→p =̂ diverges(LS1, σ) ∨

(∃s:seq(LS×Σ) dom(s) = N ∧ s0 = (LS1, σ) ∧ (∀u:dom(s) su
ls

−→p su+1)).

Note that we distinguish between non-terminating and aborting behaviour of labelled

statements. An aborting labelled statement generates arbitrary finite and infinite traces,

i.e., if a labelledabort statement is executed, every behaviour of the program is gener-

ated. This is distinguished from non-termination of a labelled statement where either an

atomic part of the labelled statement diverges, or the labelled statement as a whole does

not terminate.

The guard and termination of labelled statement are defined as follows.

Definition 2.8. For a labelled statement LS1 in process p and stateσ, we define:

1. (gp.LS1).σ =̂ (∃σ′ (LS1, σ)
ls ∗
−→ (id, σ′)) ∨ ¬(tp.LS1).σ
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2. (tp.LS1).σ =̂ ¬(LS1, σ)
ls ∞
−→p

By the operational semantics of atomic labelled statements(Fig. 2.3), gp.pi must

imply pcp = i for every processp and labeli ∈ PCp. We present a method for calculating

gp.LS1 andtp.LS1 using predicate transformers in Lemma 4.10.

Lemma 2.9. Suppose LS1 is an atomic statement, p is a process, andσ, σ′ are states,

then(LS1, σ)
ls

−→p (LS′
1, σ

′) ∧ (tp.LS1).σ holds iff LS′1 = id ∧ σ′ 6= ↑ holds .

Proof.

(tp.LS1).σ

≡ {LS1 is atomic}{definition oftp.LS1}

¬diverges(LS1, σ)

≡ {LS1 is atomic}

(∃σ′ σ′ 6= ↑ ∧ (LS1, σ)
ls

−→p (id, σ′))

≡ {one-point rule}

σ′ 6= ↑ ∧ (LS1, σ)
ls

−→p (id, σ′) 2

2.4 The concurrent programming model

Using the operational semantics from the sequential part ofour programming language,

we formalise our execution model. We present the formal syntax of a program in Sec-

tion 2.4.1; the execution semantics in Section 2.4.2, whichdescribes a single step of

execution of a program; and the execution traces of a programin Section 2.4.3.

2.4.1 Syntax of a program

A program in our model is defined as follows:

PRGM =̂ PPROC× PVAR× US× (PROC→ LS)

where

• Proc: PPROCis a finite set of process identifiers.
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• Var: PVARis a finite set of variables. Each variable inVar may be:

– local to a process, sayp, i.e., the variable cannot be read or written by any

process different fromp or

– shared, i.e., the variable can be both read and written by any process in the

program.

• Init: US, which initialises the program, i.e., is executed before any other process

and is the only statement that may explicitly modify programcounters. We assume

thatA.Init terminates for any programA. We defineinitial(A) to be the set of all

possible initial states ofA, i.e.,

initial(A) =̂ {σ | σ ∈ ΣA.VAR∧ (∃ρ:Σ (A.Init, ρ)
us

−→
∗

(skip, σ))}.

• exec: PROC→ LS is a function that maps each process to the labelled statement

that the process executes.

We definePCp =̂ labels(exec(p)), which does not includeτ , i.e.,τ 6∈ PCp and

PCτ
p =̂ PCp ∪ {τ}

PC =̂
⋃

p:Proc PCp

PCτ =̂ PC ∪ {τ}.

We usepi to denote the atomic statement labelledi in exec(p). For any processp, we

definegp.pτ =̂ false, i.e., once a process terminates, it becomes disabled permanently.

For a predicateP and programA, we introduce the following notation:

(∀A
pi

P) =̂ (∀p:A.Proc(∀i:PCτ

p
P))

(∃A
pi

P) =̂ (∃p:A.Proc(∃i:PCτ

p
P)).

Note that both(∀A
pi

P) and(∃A
pi

P) includepτ .

2.4.2 Operational semantics

Thestate transition֒→p: Σ × Σ↑ represents a single step of execution of processp and

→֒A: Σ × Σ↑ represents a single step of execution in programA (Fig. 2.6). By rule
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proc, a process takes a step if a statement of the process is executed, and by rulepar, a

program takes a step if some process in the program takes a step.

proc
(LS, σ)

ls
−→p (LS′, σ′)

σ →֒p σ′
par

p ∈ A.Proc σ →֒p σ′

σ →֒A σ′

FIGURE 2.6: Execution semantics

2.4.3 Execution traces

We assume that programs at the very least satisfyminimal progress, where some enabled

process is chosen for execution, although the same process may be repeatedly chosen.

(See Section 3.1 for more details on fairness.) This guarantees that if there is an enabled

process, then there exists a transition to a new state. We define

dseq(Σ) =̂ seq(Σ) ∪ {t | s∈ seq(Σ) ∧ dom(s) 6= N ∧ t = sa 〈↑〉}

to be the set of sequences that may or may not diverge. Note that a divergent sequence

must be finite and that only the last state may diverge.

Definition 2.10 (Minimal progress). A possibly infinite sequence of states s∈ dseq(Σ)

satisfiesminimal progressiff

dom(s) 6= N ⇒ last(s) = ↑ ∨ ¬(∃A
pi

(gp.pi). last(s)). (2.11)

That is,s satisfies minimal progress iff eithers is infinite, or no statement is enabled in

the last state ofs. For a set of natural numbersK, we define

K+ =̂ K − {0}.

Definition 2.12 (Trace). A possibly infinite sequence of states s∈ dseq(Σ) is a traceof

programA iff

s0 ∈ initial(A) ∧ (∀u:dom(s)+ su−1 →֒A su). (2.13)

Thus, in a trace of programA, says, the first state ofs must satisfy the initialisation

of A, and each successive state must be obtained from an execution of a statement inA
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according to֒→A. If a trace, says, of A is finite, depending on the condition that the last

state ins satisfies,A either terminates (all processes have terminated), total deadlocks

(all processes are disabled and one or more processes have not terminated), or diverges

(a non terminating atomic statement is executed).

Definition 2.14(Terminates, Total deadlock, Diverged). Given a programA and a trace

s ofA such thatdom(s) 6= N,

1. A terminatesin trace s ofA iff (∀p:A.Proc pcp = τ). last(s)

2. A suffers fromtotal deadlockin s iff ((∀A
pi
¬gp.pi) ∧ (∃p:A.Proc pcp 6= τ)). last(s)

3. A divergesin s iff last(s) = ↑.

Definition 2.15 (Complete trace). A trace s of a programA is completeiff

dom(s) 6= N ⇒ ¬(∃σ:Σ last(s) →֒A σ) holds.

Lemma 2.16(Finite trace). For a programA and complete trace s ofA, if dom(s) 6= N,

i.e., s is finite, thenA either terminates, total deadlocks, or diverges inA.

Thus, a complete trace represents either a terminating, total deadlocked, divergent,

or infinite execution of a program. For a programA, we let Tr.A denote the set of

all complete traces of the program. Because we use interleaving semantics, a divergent

execution of an atomic statement differs from a terminatingexecution. A divergent state-

ment does not cause total deadlock because a statement is being executed, however, no

other statements may be executed because the divergent statement does not terminate.

Note that a trace is only divergent if a divergent unlabelled(hence atomic) statement

is executed. Due to the existence of non-terminating concurrent programs, an infinite

execution of a labelled statement is regarded as valid behaviour.

The next lemma states that a process that has terminated stays terminated in all future

states and a program that has terminated does not have any future states.

Lemma 2.17(Program termination). For a programA; process p∈ A.Proc; and a

trace s ofA, the following hold:
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1. (∀u:dom(s) (pcp = τ).su ⇒ (∀v:dom(s) v ≥ u ⇒ (pcp = τ).sv))

2. (∀u:dom(s) (∀p:A.Proc pcp = τ).su ⇒ dom(s) 6= N ∧ u = last(s))

2.5 Linear temporal logic

Within any formalism, there are several ways reason about the temporal ordering be-

tween states. For example, linear temporal logic (LTL) [MP92] (each state has ex-

actly one successor) and computational tree logic (CTL) [BAMP81] (some states may

have more than one successor). Both views have their advantages and disadvantages

[Lam80, EH86] but in the end, the choice should be made on the sorts of properties

one wishes to study [BAMP81]. We study properties that hold over all execution traces

which makes LTL more appropriate.

2.5.1 Syntax and semantics

The partial syntax of an LTL formulaTF is defined as follows, whereP is a predicate

⊙ ∈ {∧,∨,⇒,⇔}

TF =̂ P | ¬TF | 2TF | 3TF | TF1 U TF2 | TF1 W TF2 | TF1 ⊙ TF2 |

(∀x TF) | (∃x TF).

Definition 2.18(Temporal formula semantics). [MP92] Let P be a predicate; F and G

be LTL formulae; s∈ seq(Σ) be a sequence of states; and u∈ dom(s). We define:

(s, u) ⊢ P ≡ P.su

(s, u) ⊢ ©©©F ≡ (dom(s) 6= N ⇒ u 6= max(dom(s))) ∧ (s, u + 1) ⊢ F

(s, u) ⊢ 2F ≡ (∀v:dom(s) v ≥ u ⇒ (s, v) ⊢ F)

(s, u) ⊢ 3F ≡ (∃v:dom(s) v ≥ u ∧ (s, v) ⊢ F)

(s, u) ⊢ F U G ≡ (∃v:dom(s) v ≥ u ∧ (s, v) ⊢ G ∧ (∀w:u..v−1 (s, w) ⊢ F))

(s, u) ⊢ F W G ≡ (s, u) ⊢ (F U G) ∨ 2F

(s, u) ⊢ F ⊙ G ≡ (s, u) ⊢ F ⊙ G

(s, u) ⊢ (∀x F) ≡ (∀x (s, u) ⊢ F)

(s, u) ⊢ (∃x F) ≡ (∃x (s, u) ⊢ F).
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If F does not contain any LTL operators (i.e., is a predicate), then (s, u) ⊢ F holds iff

F.su holds. We uses ⊢ F to mean(s, 0) ⊢ F thus,s ⊢ 2F iff all states ins satisfyF,

s ⊢ 3F iff somestate ins satisfiesF, s ⊢ F U G iff there either exists a state ins that

satisfiesG andF holds untilG does, ands⊢ F W G iff s⊢ F U G or F always holds, in

which caseG may never be established.

Because a program may diverge, one may end up with a trace whose last element is

↑. If s is a divergent trace,s⊢ 2P is false ((s, last(s)) ⊢ P ≡ false), buts⊢ 3P may be

true if P is established beforelast(s), ands⊢ PW Q holds ifPU Q holds beforelast(s).

For a sequences, we definefront(s) to be all the elements ofs exceptlast(s), that is,

s = front(s)a 〈last(s)〉.

Definition 2.19. Suppose s∈ {t ∈ dseq(Σ) | dom(t) 6= N ∧ last(t) = ↑}. For LTL

formulae F and G; predicate P; and u∈ dom(s)

(s, u) ⊢ P ≡ u 6= last(s) ∧ P.su

(s, u) ⊢ ©©©F ≡ u 6= max(dom(s)) ∧ u + 1 6= max(dom(s)) ∧ (s, u + 1) ⊢ F

(s, u) ⊢ 2F ≡ false

(s, u) ⊢ 3F ≡ (front(s), u) ⊢ 3F

(s, u) ⊢ F U G ≡ (front(s), u) ⊢ F U G

(s, u) ⊢ F W G ≡ (front(s), u) ⊢ F U G

(s, u) ⊢ F ⊙ G ≡ (s, u) ⊢ F ⊙ G

(s, u) ⊢ (∀x F) ≡ (∀x (s, u) ⊢ F)

(s, u) ⊢ (∃x F) ≡ (∃x (s, u) ⊢ F).

Definition 2.20(Satisfiable, Valid). Given a set T⊆ {s | s∈ dseq(Σ)}, an LTL formula

F is satisfiablein T iff (∃s:T s⊢ F) holds andvalid in T iff (∀s:T s⊢ F) holds.

For a set of sequencesT, we use notationT |= F to denote that LTL formulaF is valid

in T.

2.5.2 Leads-to

LTL makes it easy to specify progress properties, however, proving that the specified

property holds can be difficult [Lam02]. The sorts of properties we are concerned with
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are eventuality properties, which may be best stated usingleads-to. For LTL formulaeF

andG, and a traces, if F leads-toG (denotedF  G) holds ins, thenG is guaranteed

to hold eventually from any state that satisfiesF. We will assume that binds weaker

than¬, ∧, and∨. For example,(P1 ∧ P2)  (Q1 ∨ Q2) ≡ P1 ∧ P2  Q1 ∨ Q2.

However, we often leave in the brackets for clarity.

Chandy and Misra define leads-to over predicates without using LTL, thus making

proofs of progress properties known as eventuality properties simpler [CM88, DG06].

However, it is not easy to be convinced that the definition of leads-to provided by Chandy

and Misra captures its intended temporal meaning [CM88, DG06].

We define leads-to using LTL, which we relate to Chandy and Misra’s definition via

theorems and lemmas. This approach has a number of advantages. We are able to prove

that many theorems for leads-to in UNITY are actually more general theorems of LTL,

in particular, we show that two of the required conditions inthe definition of leads-to

[CM88, DG06] are theorems of LTL (see Theorems 2.22 and 2.23). By relating the

definition of leads-to in UNITY to LTL, we obtain a proof of soundness. Furthermore,

while weak-fairness (see Section 3.1) is inherently assumed in UNITY, we are able to

provide theorems for proving progress under minimal progress and strong fairness (see

Section 4.3.2).

Definition 2.21 (Leads-to). For LTL formulae F and G, Fleads-toG (written F G)

iff 2(F ⇒ 3G).

The theorems for leads-to below are either from UNITY [CM88]or by Dongol and

Mooij [DM06, DM08]. The following theorem states that one may proveF  G by

finding an LTL formulaH for which F  H andH  G hold.

Theorem 2.22(Transitivity). For LTL formulae F and G, F G holds if for some LTL

formula H,(F  H) ∧ (H  G) holds.

Proof.

(F  H) ∧ (H  G)

≡ {definition of }

2(F ⇒ 3H) ∧ 2(H ⇒ 3G)
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⇛ {distribute2}{(a ⇒ b) ⇒ (3a ⇒ 3b)}

2((F ⇒ 3H) ∧ (3H ⇒ 33G))

⇛ {33a ≡ 3a}{transitivity of⇒}

2(F ⇒ 3G)

≡ {definition of }

F  G 2

The next theorem, in its finite application of, say, two progress assertions, amounts

to the inference thatF  G andH  G iff (F ∨ H) G.

Theorem 2.23(Disjunction). For LTL formulae F and G, if F≡ (∃m:W F.m), for some

set W, given that m does not occur free in G, then F G iff (∀m:W F.m G).

Proof.

(∀m:W F.m G)

≡ {definition of }

(∀m:W 2(F.m⇒ 3G))

≡ {(∀x:T 2F) ≡ 2(∀x:T F)}

2(∀m:W F.m⇒ 3G)

≡ {mnot free inG}

2((∃m:W F.m) ⇒ 3G)

≡ {definition of }{F ≡ (∃m:W F.m)}

F  G 2

Leads-to is monotonic in its left argument and anti-monotonic in its right argument

[MP92, DM06].

Lemma 2.24(Monotonicity, Anti-monotonicity). For LTL formulae F, G and H, F G

holds if either of the following hold

Left monotonicity (F ⇒ H) ∧ (H  G)

Right anti-monotonicity (F  H) ∧ (H ⇒ G).



32 THE PROGRAMMING MODEL

Lemma 2.25(Contradiction). For LTL formulae F and G,

F  G ≡ (F ∧ ¬G) G.

Proof.

F  G

⇛ {left-monotonicity}

(F ∧ ¬G) G

≡ {definition of }

2(F ∧ ¬G ⇒ 3G)

≡ {logic}

2(F ⇒ G ∨ 3G)

⇛ {a ⇒ 3a}{definition of }

F  G 2

Chandy and Misra present a number of theoretical results for in the context of

UNITY [CM88]. It turns out that many of the properties they describe are more general

theorems of LTL, independent of the program under consideration. Thus, we reprove the

results of Chandy and Misra in the context of LTL.

Lemma 2.26(Implication). For LTL formulae F and G, if2(F ⇒ G), then F G.

Proof.

2(F ⇒ 3G)

⇚ {a ⇒ 3a}

2(F ⇒ G)

≡ {assumption}

true 2

Note that if[ F ⇒ G ] thenF  G because[ F ⇒ G ] ⇒ 2(F ⇒ G).

Lemma 2.27(Cancellation). For LTL formulae F, G, H and D, if F (G ∨ D) and

D H, then, F (G ∨ H).
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Proof.

2(F ⇒ 3(G ∨ D)) ∧ 2(D ⇒ 3H)

⇛ {distribute3}{a ⇒ 3a}

2(F ⇒ 3G ∨ 3D) ∧ 2(3D ⇒ 3H)

⇛ {distribute2}{logic}

2(F ⇒ 3G ∨ 3H)

≡ {logic}{distribute3}

2(F ⇒ 3(G ∨ H)) 2

Lemma 2.28(Point-wise disjunction). Given that F.m and G.m are LTL formulae where

m ranges over a set W,(∃m:W F.m) (∃m:W G.m) holds if(∀m:W F.m G.m) holds.

Proof.

(∀m:W F.m G.m)

⇛ {Lemma 2.26 (implication)}{Theorem 2.22 (transitivity)}

(∀m:W F.m (∃n:W G.n))

⇛ {Theorem 2.23 (disjunction)}{renaming}

(∃m:W F.m) (∃m:W G.m) 2

Lemma 2.29(Induction). Given that M is a total function from program states to set W

and (≺, W) is a well-founded relation, for LTL formulae F, G that do not contain free

occurrences of variable m, F G holds if

(∀m:W F ∧ M = m  (F ∧ M ≺ m) ∨ G). (2.30)

Proof. Our proof is identical to that of Chandy and Misra [CM88, pp72-74]. The induc-

tion principle for well-founded sets, sayW, is given below whereRm is a formula with

free variablem, andW ⇃m =̂ {n | n ∈ W ∧ n ≺ m}.

(∀m:W(∀n:W⇃m Rn) ⇒ Rm)⇛ (∀m:W Rm) (2.31)

ChoosingRm to beF ∧ M = m G, we have:

(∀m:W(∀n:W⇃m F ∧ M = n G) ⇒ (F ∧ M = m G))⇛

(∀m:W F ∧ M = m G)

(2.32)
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Also, (2.30) may equivalently be written as

(∀m:W F ∧ M = m  (∃n:W F ∧ n = M ∧ n ≺ m) ∨ G) (2.33)

We have the following calculation:

(∀m:W x(∀n:W⇃m F ∧ M = n G)y

⇒ {Theorem 2.23 (disjunction)}

1• (∃n:W⇃m F ∧ M = n) G

⇔ {G G}

(∃n:W⇃m F ∧ M = n) ∨ G G

⇔ {definition ofW ⇃m}

(∃n:W F ∧ M = n ∧ n ≺ m) ∨ G G

⇒ {(2.33)}{Theorem 2.22 (transitivity)}

F ∧ M = m G)

⇛ {(2.32)}

· (∀m:W F ∧ M = m G)

⇛ {Theorem 2.23 (disjunction)}

(∃m:W F ∧ M = m) G

≡ {assumption:m is free inF}

F ∧ (∃m:W M = m) G

≡ {one point rule}

F  G 2

The basis of Lemma 2.29 (induction) is to find a total function, sayM, whose values

range over a well-founded set, say(≺, W). If for every possible value ofM, either the

value ofM is eventually reduced (with respect to(≺, W)) or Q is established, thenQ

must eventually hold. This is because(≺, W) is well-founded, hence, any value ofM

may only be decreased a finite number of times.
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2.6 Conclusion

In Section 1.1.1, we have seen several event-based models, however, in general, each

of these is essentially ado od program with a non-deterministic choice over all pos-

sible program statements. Such models may be distinguishedfrom the model we use,

where concurrent programs are modelled as a number of sequential processes executing

in parallel [OG76, AO91, FvG99, DG06]. Our language is basedon Dijkstra’s Guarded

Command Language which we have extended with atomicity brackets and labels.

The model we have defined allows more general synchronisation statements to be

defined. Owicki and Gries [OG76] and Apt and Olderog [AO91] provide synchronisa-

tion via blocking atomic statements of the formawait B then S end, (which is equiv-

alent to〈if B → S fi〉 in our model) whereS is not allowed to contain any loops or

await statements. Feijen and van Gasteren [FvG99] tightened thisrestriction even fur-

ther and the only allow synchronisation via theguarded skip, i.e., a statement of the

form: 〈if B → skip fi〉.

We have also incorporated program counters into the model which enables us to

reason about a program’s control state. We provide an operational semantics, which

facilitates trace-based reasoning using LTL. Chapter 3 demonstrates the usefulness of

LTL in formalising and specifying progress properties.

In contrast to models such as CSP [Hoa85], our programming model does not allow

dynamic creation of processes. This is not a problem for the derivations in this thesis.

However, code that creates new processes dynamically can bedeveloped by introducing

an indexed set of processes, sayp dyn, and initialising the system so that each process

in p dyn is blocked. At the point in which a process, sayp, dynamically creates a new

process,p simply unblocks the process inp dynwith the smallest index.
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3
Formalising Progress Properties

Many terms such as deadlock and starvation freedom are used to define the general prog-

ress properties that concurrent programs may exhibit. However, these terms are usually

defined using natural language and hence their exact meaningcan be ambiguous. Fur-

thermore, without formalisation, proving that a program satisfies a given property is

difficult. We may classify concurrent programs as blocking (synchronisation is achieved

via guarded blocking commands) and non-blocking (synchronisation is achieved using

atomic non-blocking compare-and-swap hardware primitives). Using the framework

from Chapter 2, we present formal definitions of various progress properties of con-

current programs.

The progress properties of concern in a blocking program areindividual progress,

starvation, individual deadlock, total deadlockand livelock, whereas in non-blocking

programs, one is concerned withwait, lock and obstructionfreedom. Given that we

37
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have incorporated LTL into the framework, and that LTL allows progress properties to be

specified, we present our definitions using LTL. We also give the relationships between

the different progress properties and present lemmas that describe the conditions under

which the properties hold.

We formalise weak and strong fairness, which allows us to explicitly state the fair-

ness conditions assumed by each theorem. Thus, we are able topresent different proof

obligations depending on the type of fairness assumed. Our definitions of weak fairness

is equivalent to that of Lamport [Lam02], however, our strong fairness definition allows

us to establish a more intuitive relationship between weak and strong fairness than Lam-

port. In this chapter, we will assume an absence of divergence, i.e., that each atomic

statement in the program terminates.

This chapter is structured as follows. We define fairness in Section 3.1; present

progress properties of blocking programs in Section 3.2; and progress properties of non-

blocking programs in Section 3.3.

Contributions. We formalise weak and strong fairness and show that our definition

of strong fairness implies weak fairness. Thus, we obtain a tighter relationship between

strong and weak fairness than Lamport [Lam02]. Apart from total deadlock, formal def-

initions of the progress properties and the relationships between the properties have not

been provided in the literature. Sections 3.1 and 3.2 have not been published elsewhere.

Section 3.3 is based on [Don06a]. However, the presentationin [Don06a] is based on

the progress logic from [CM88, DG06], where weak fairness isinherently assumed. In

[Don06a], because the weak fairness assumption is too strong, minimal progress had to

be modelled by taking process failure into account. In this chapter, we use the logic

from Section 2.4.2, which facilitates reasoning under minimal progress, and thus simpli-

fies our definitions.
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3.1 Fairness

In this section, we use the theory from Chapter 2 to formaliseweakandstrongfairness.

Fairness is used as an abstraction of the scheduler, thus refers to scheduling choices

betweenprocesses, as opposed to fair choicewithin a process. Thus, for example, the

fairness constraint does not affect execution of statementif true→ S1 [] true→ S2 fi, i.e.,

a non-deterministic choice betweenS1 andS2. However, given a concurrent execution

of two processes sayp andq, the fairness constraint can affect which of these processes

is chosen for execution. Stronger fairness assumptions canenable us to prove stronger

progress properties about a program.

Informally, weak fairness guarantees that a statement thatis continuously enabled is

eventually executed, while strong fairness guarantees that any statement that becomes

enabled infinitely often is eventually executed. Our definitions are closely related to the

formalisation given by Lamport [Lam02], however we strengthen the definition of strong

fairness to establish a more intuitive link between weak andstrong fairness.

Definition 3.1 (Weakly fair). For a programA, a trace s∈ Tr.A is weakly fairiff WF(s)

holds, where

WF(s) =̂ (∀A
pi

s⊢ 23¬gp.pi). (3.2)

Thus, for a programA, traces is weakly fair iff for each statesu and statementpi, there

is a future statesv such that either control ofp is not atpi, or control is atpi but pi is

blocked from execution. Condition (3.2) may equivalently be expressed as:

(∀A
pi

s⊢ ¬32gp.pi).

That is, for allpi, it is not the case thatp is eventually forever atpi and the guard ofpi

holds.

Definition 3.3 (Strongly fair). For a programA, a trace s∈ Tr.A is strongly fair iff

SF(s) holds, where

SF(s) =̂ (∀A
pi

s⊢ 2(23gp.pi ⇒ 3(pcp 6= i))). (3.4)
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Thus, traces is strongly fair iff for everypi, if from any statepi always eventually be-

comes enabled, then eventuallypcp 6= i holds (which meanspi is executed). Lamport

gives the following alternative definition for strong fairness [Lam02]:

(∀A
pi

s⊢ 23gp.pi ⇒ 23(pcp 6= i)) (3.5)

We can show that our definition of strong fairness is equivalent to Lamport’s defini-

tion using the following lemma.

Lemma 3.6. For any process p and label i∈ PCτ
p, (3.4) is equivalent to (3.5).

Proof.

2(23gp.pi ⇒ 3(pcp 6= i))

≡ 2(32(¬gp.pi) ∨ 3(pcp 6= i))

≡ {distribute3}

23(2(¬gp.pi) ∨ (pcp 6= i))

≡ {23(a ∨ b) ≡ 23a ∨ 23b}

232(¬gp.pi) ∨ 23(pcp 6= i)

≡ {232a ≡ 32a}

≡ 32(¬gp.pi) ∨ 23(pcp 6= i)

≡ 23gp.pi ⇒ 23(pcp 6= i) 2

Lamport does not show that (3.5) implies (3.2) [Lam02, pg106]. Instead, Lamport

shows that weak and strong fairness are equivalent iff

(∀A
pi

s⊢ 23¬gp.pi ⇒ 32¬gp.pi ∨ 23(pcp 6= i)). (3.7)

This result is not very useful because the antecedent of the implication is (3.2) and the

consequent is (3.5). So, according to Lamport, weak and strong fairness are equivalent

if weak fairness implies strong fairness!

We do not believe that this should be the case, i.e., strong fairness should indeed

be a stronger condition than weak fairness. We prove this result for our definitions

(Definitions 3.1 and 3.3) in Lemma 3.8 below.

Lemma 3.8(Fairness).
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1. Every weakly fair trace satisfies minimal progress (Definition 2.10).

2. Every strongly fair trace is weakly fair.

Proof (1). The proof is trivial because every weakly fair trace is a complete trace of the

program and every complete trace of a program satisfies minimal progress.

Proof (2). We have the following calculation for any processp ∈ A.Proc and label

i ∈ PCτ
p. We use the property thatgp.pi ⇒ pcp = i, i.e.,pcp 6= i ⇒ gp.pi.

2(23gp.pi ⇒ 3(pcp 6= i))

≡ {logic}{¬2x ≡ 3¬x}{¬3x ≡ 2¬x}

2(32¬gp.pi ∨ 3(pcp 6= i))

≡ {3 is distributive over∨}

23(2¬gp.pi ∨ pcp 6= i)

⇛ {2x ⇒ x}

23(¬gp.pi ∨ pcp 6= i)

⇛ {pcp 6= i ⇒ ¬gp, pi}

23¬gp.pi

Thus, each strongly fair trace is also weakly fair. 2

Definition 3.9 (Minimally fair traces, Weakly fair traces, Strongly fair traces). For a

programA, the sets ofminimally fair traces, weakly fair tracesandstrongly fair traces

are given byTrMF, TrWF, andTrSF, respectively, where:

TrMF.A =̂ Tr.A

TrWF.A =̂ {s | s∈ Tr.A ∧ WF(s)}

TrSF.A =̂ {s | s∈ Tr.A ∧ SF(s)}.

Distinguishing betweenTrMF.A, TrWF.A, andTrSF.A allows us to describe lemmas that

provide differing conditions under which a progress property might hold based on the

progress assumption at hand. For example, given a LTL formula F and programA, if

TrWF.A |= F holds, thenF holds for each weakly fair trace ofA, butF need not hold for

TrMF.A.

Definition 3.10. We sayF is a fairness assumptioniff F ∈ {MF, WF, SF}.
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3.2 Blocking programs

In this section, we formalise the progress properties of blocking programs and explore

the relationships between the different properties. We define individual and total dead-

lock in Section 3.2.1 and define individual progress and starvation in Section 3.2.2. In

Section 3.2.3, we describe the concept of a progress function, which is then used to

define livelock. (Progress functions are also used to define the progress properties of

non-blocking programs in Section 3.3.) In Section 3.2.4 we present example uses of our

definitions.

3.2.1 Deadlock

Deadlock describes the phenomenon where one or more processes that have not yet ter-

minated are blocked forever. There are two forms of deadlock: individual and total.

Individual deadlock is a local condition where a single process that has not terminated is

blocked forever, and total deadlock is when all processes inthe program are blocked for-

ever. Apt and Olderog [AO91] only define total deadlock whileFeijen and van Gasteren

[FvG99] distinguish between individual and total deadlock, but do not present formal

definitions of the two terms. We remind the reader thatτ 6∈ PCp for any processp.

Definition 3.11(Individual deadlock, Individual termination). A process p∈ A.Proc in

programA suffers fromindividual deadlockin trace s∈ Tr.A, iff IndDead(p, s) holds

where

IndDead(p, s) =̂ (∃i:PCp s⊢ 32(pcp = i ∧ ¬gp.pi)).

That is, a processp suffers from individual deadlock iffp reaches a labeli 6= τ from

whichp remains disabled permanently. For a traces and processp, we define

Term(p, s) =̂ s⊢ 3(pcp = τ).

We recall that we assume absence of divergence for this chapter. Total deadlock for

a tracesand programA has been defined in terms of the last state ofs in Definition 2.14,

whereA suffers from total deadlock ins iff ((∀A
pi
¬gp.pi) ∧ (∃p:A.Proc pcp 6= τ)). last(s)

We present an alternative technique for proving total deadlock below.
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Lemma 3.12(Total deadlock). ProgramA suffers from total deadlock in trace s∈ Tr.A

iff TotDead(s) holds where:

TotDead(s) =̂ (∀p:A.Proc Term(p, s) ∨ IndDead(p, s)) ∧ (∃p:A.Proc IndDead(p, s)).

Proof (⇛). If s satisfies total deadlock as defined in Definition 2.14,s is finite, and

hence(∀A
pi
¬gp.pi). last(s) holds, which implies(∀p:A.Proc Term(p, s) ∨ IndDead(p, s)).

BecauseA suffers from total deadlock ins, (∃p:A.Proc pcp 6= τ). last(s) holds, and hence

(∃p:A.Proc IndDead(p, s)) must hold. 2

Proof (⇚). Because(∀p:A.Proc Term(p, s) ∨ IndDead(p, s)) holds,s is finite (i.e.,last(s)

is well defined). Becauses∈ Tr.A ands is finite,(∀A
pi
¬gp.pi). last(s) must hold. Due to

(∃p:A.Proc IndDead(p, s)), condition(∃p:A.Proc pcp 6= τ). last(s) must hold.

That is, a programA suffers from total deadlock in traces iff each process ofA either

terminates or suffers from individual deadlock ins, and at least one process suffers from

individual deadlock. Note that ifTotDead(s) holds, thens is finite. We may lift these

definitions to sets of traces as follows.

Definition 3.13. For a programA and fairness assumptionF, process p∈ A.Proc

suffers fromindividual deadlockunderF iff p suffers from individual deadlock for some

trace s∈ TrF.A, i.e.,(∃s:TrF.A IndDead(p, s)).

ProgramA suffers fromtotal deadlockunder fairness assumptionF iff A suffers from

total deadlock for some s∈ TrF.A, i.e.,(∃s:TrF.A TotDead(s)).

Next, we present a number of lemmas that describe how deadlock can be avoided. We

aim to provide conditions that may be proved in the same manner as in [DG06, CM88],

i.e., by considering the program statements as opposed to examining state traces.

Lemma 3.14(Avoid individual deadlock). For a programA, process p∈ A.Proc is

devoid of individual deadlock in trace s∈ Tr.A if:

(∀i:PCp s⊢ 23(pcp 6= i ∨ gp.pi)).

Proof. Trivial because(∀i:PCp s⊢ 23(pcp 6= i ∨ gp.pi)) ≡ ¬IndDead(p, s).
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Thus, a process is devoid of individual deadlock if for everystatementpi it is always the

case that either control ofp is eventually not ati or pi becomes enabled. The next lemma

outlines a number of possible ways of avoiding total deadlock.

Lemma 3.15(Total deadlock (2)). For a programA and trace s∈ Tr.A, ¬TotDead(s)

holds if any of the following hold:

1. dom(s) = N

2. s⊢ 2(∃A
pi

gp.pi)

3. dom(s) 6= N ∧ (∀p:A.Proc (pcp = τ).last(s))

Proof (1). By Definition 2.14, ifTotDead(s) holds, thendom(s) 6= N, i.e.,s is of finite

length. By contrapositive, ifdom(s) = N, i.e.,s is of infinite length, then¬TotDead(s)

must hold.

Proof (2).

s⊢ 2(∃A
pi

gp.pi)

⇛ {definition of2}

(∀u:dom(s) (∃A
pi

gp.pi).su)

⇛ {s is a complete trace}

(∀u:dom(s) su →֒A su+1)

≡ {definition of trace}

dom(s) = N

≡ {part (1) of Lemma 3.15 (total deadlock (2))}

¬TotDead(s)

Proof (3). Becausedom(s) 6= N, last(s) is well defined, and

(∀p:A.Proc (pcp = τ).last(s))

⇛ {τ 6∈ PCp}

(∀p:A.Proc ¬IndDead(p, s))

≡ {logic}

¬(∃p:A.Proc IndDead(p, s))
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⇛ {definition ofTotDead(s)}

¬TotDead(s)

Thus, a program is devoid of total deadlock in traces if (1) s is infinite, (2) for each

state inran(s), there is some process that is enabled, (3)s is finite and all processes are

terminated in the last state ofs. Note that a consequence of part (3) of Lemma 3.15 is

that total deadlock does not exist if all processes are terminating ins, i.e.,

(∀p:A.Proc Term(p, s)) ⇒ ¬TotDead(s).

3.2.2 Individual progress and starvation

The simplest form of progress isindividual progresswhere a process makes progress

whenever a statement in the process is executed. If a processis executing a non-atomic

loop, individual progress only guarantees that statementswithin the loop are executed,

but not that the loop terminates. Closely related to individual progress is the concept

of starvationwhich describes the phenomenon where a process that always becomes

enabled is never chosen for execution. Note that starvationcannot occur in the presence

of strong fairness (see Lemma 3.22). Although we present thedefinition of individual

progress and starvation together, we note that absence of starvation does not guarantee

individual progress, however individual progress does guarantee absence of starvation

(see Corollary 3.20).

Definition 3.16 (Individual progress, Starvation). A process p∈ A.Proc in programA

satisfiesindividual progressin trace s∈ Tr.A, iff IndProg(p, s) holds where

IndProg(p, s) =̂ (∀i:PCp s⊢ 23(pcp 6= i))

and suffers fromstarvationiff Starve(p, s) holds where

Starve(p, s) =̂ (∃i:PCp s⊢ 32(pcp = i) ∧ 23gp.pi).

That is, a program satisfies individual progress, iff for each pi reached by process

p, control of p eventually gets pastpi. A process suffers from starvation in traces if
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there is some labeli such that eventuallypcp = i holds forever, yetpi always eventually

becomes enabled. The definitions of individual progress andstarvation may be lifted to

sets of traces as follows.

Definition 3.17. SupposeA is a program under fairness assumption F; p∈ A.Proc is

a process.

Then, p satisfiesindividual progress underF iff (∀s:TrF.A IndProg(p, s)) holds i.e., p sat-

isfies individual progress in every trace s∈ TrF.A.

Similarly, p suffers fromstarvation underF iff (∃s:TrF.A Starve(p, s)) holds, i.e., p suffers

from starvation in some trace s∈ TrF.A.

We may lift the definitions of individual progress and starvation once more to pro-

grams consisting of sets of processes as follows.

Definition 3.18. A programA under fairness assumptionF satisfiesindividual progress

iff every process p∈ A.Proc satisfies individual progress underF.

ProgramA under fairness assumptionF suffers fromstarvationiff some process p∈

A.Proc suffers from starvation underF.

Thus, to show thatA under fairness assumptionF satisfies individual progress, one must

show that every process satisfies individual progress in every trace withinTrWF.A. On

the other hand, to show thatA suffers from starvation, one must show that some process

of A suffers from starvation in some trace withinTrWF.A

Absence of starvation or absence of individual deadlock do not imply individual

progress. However if both starvation and individual deadlock are absent, then there must

be individual progress, which is highlighted by the following lemma.

Lemma 3.19(Individual progress). For a programA; process p∈ A.Proc; and trace

s∈ Tr.A,

¬Starve(p, s) ∧ ¬IndDead(p, s) ≡ IndProg(p, s).

Proof. Supposep ∈ A.Proc ands∈ Tr.A.
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¬Starve(p, s) ∧ ¬IndDead(p, s)

≡ {by definitions ofStarveandIndDead}{logic}

(∀i:PCp s⊢ 23(pcp 6= i) ∨ 32¬gp.pi) ∧ (∀i:PCp s⊢ 23(pcp 6= i) ∨ 23(gp.pi))

≡ {logic}

(∀i:PCp s⊢ 23(pcp 6= i) ∨ (32¬gp.pi ∧ 23gp.pi))

≡ {logic}{definition ofIndProg}

IndProg(p, s) 2

We obtain two immediate corollaries that identify the relationship between individual

progress and individual deadlock, and between individual progress and starvation. Note

that the opposite is not true, i.e., the absence of starvation does not guarantee individual

progress.

Corollary 3.20. For a programA; process p∈ A.Proc; and trace s∈ Tr.A, both of the

following hold:

1. IndProg(p, s) ⇒ ¬Starve(p, s)

2. IndProg(p, s) ⇒ ¬IndDead(p, s)

That is, if p satisfies individual progress ins then,p does not suffer from starvation or

individual deadlock ins. It is straightforward to lift Corollary 3.20 to sets of traces, and

then to programs if necessary.

We can use the following lemma to show total deadlock is avoided if there exists a

process that does not terminate ins and makes individual progress ins, or all processes

make individual progress ins.

Lemma 3.21(Total deadlock (3)). For a programA and trace s∈ Tr.A, ¬TotDead(s)

holds if either:

1. (∃p:A.Proc ¬Term(p, s) ∧ IndProg(p, s)), or

2. (∀p:A.Proc IndProg(p, s)).
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Proof (1).

(∃p:A.Proc ¬Term(p, s) ∧ IndProg(p, s))

≡ {Corollary 3.20}

(∃p:A.Proc ¬Term(p, s) ∧ ¬IndDead(p, s))

≡ {logic}

¬(∀p:A.Proc Term(p, s) ∨ IndDead(p, s))

⇛ {Lemma 3.12}

¬TotDead(s) 2

Proof (2).

(∀p:A.Proc IndProg(p, s))

⇛ {Corollary 3.20)}

(∀p:A.Proc ¬IndDead(p, s))

⇛ {logic}

¬(∃p:A.Proc IndDead(p, s))

⇛ {Lemma 3.12}

¬TotDead(s) 2

Note that part 1 of Lemma 3.21 (total deadlock (3)) implies that the traces is infinite

because there is a process that does not terminate and alwaysexecutes some statement.

On the other hand, part 2 may hold for finite and infinite tracesbecauseIndProg(p, s)

holds ifp terminates ins.

Under strong fairness, absence of individual deadlock is equivalent to individual

progress, while each process in every trace is starvation free.

Lemma 3.22(Individual progress and starvation under strong fairness). For a program

A; process p∈ A.Proc; and trace s∈ TrSF.A,

1. ¬IndDead(p, s) ≡ IndProg(p, s)

2. ¬Starve(p, s)

Proof (1). Supposes ∈ TrSF.A is a trace andp is a process. By Corollary 3.20,

IndProg(p, s) ⇒ ¬IndDead(p, s). We prove the implication in the other direction as

follows.
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¬IndDead(p, s)

≡ {definition ofIndDead}{logic}

(∀i:PCp s⊢ 23(pcp 6= i ∨ gp.pi))

≡ {23(a ∨ b) ≡ 23a ∨ 23b}

(∀i:PCp s⊢ 23(pcp 6= i) ∨ 23gp.pi)

⇛ {Lemma 3.6}{s∈ TrSF.A}

(∀i:PCp s⊢ 23(pcp 6= i))

≡ {definition ofIndProg}

IndProg(p, s)

Proof (2).

¬Starve(p, s)

≡ {definition ofStarve}{logic}

(∀i:PCp s⊢ 23(pcp 6= i) ∨ 32¬gp.pi)

⇚ {(3.5)}

true 2

3.2.3 Progress functions and livelock

Individual progress ensures that a process does not suffer from starvation and individual

deadlock by guaranteeing that a process always executes a statement. However, exe-

cution of a single statement is not always considered to be real progress. For instance,

the progress requirement might be that a process exits the loop that is currently being

executed. In general, progress occurs from a particular control point if one of a number

of control points is eventually reached. Furthermore, the control points that need to be

reached often require more than one statement to be executed.

To formalise real progress in a processp, we may use aprogress function

Π: Proc → (PCp → P(PCτ
p))

which, given a label returns a set of labels. We say processp makes progress according

to Π.p from a state that satisfiespcp = i if pcp ∈ Π.p.i eventually holds. Note that
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τ 6∈ dom(Π.p), because it does not make sense to define progress for a terminated

process. Furthermore, for everyi ∈ dom(Π.p), we require thati 6∈ Π.p.i holds, i.e., at

least one statement ofp must be executed forp to make progress according toΠ.

Let us consider an example. For a programA, processp ∈ A.Proc, andi ∈ PCp

supposeΠ.p.i = {j, k}, i.e., p makes progress from control pointi if p reaches control

point j or k. Now, if pcp = i  pcp ∈ Π.p.i holds, i.e.,pcp = i  pcp ∈ {j, k}, thenp is

guaranteed to make progress wheneverpcp = i.

A process suffers from livelock if the process is enabled in astate, yet the process

fails to make real progress from that state.

Definition 3.23(Livelock). A process p∈ A.Proc in programA with progress function

Π suffers fromlivelock in trace s ∈ Tr.A iff ¬IndDead(p, s) and Livelock(p, s) hold

where:

Livelock(p, s) =̂ (∃i:PCp s⊢ 3(pcp = i ∧ 2(pcp 6∈ Π.p.i))).

That is, processp suffers from livelock iffp does not deadlock and there exists a label

i that is reached such that progress does not occur fromi. We may lift the definition of

liveness to programs and sets of traces as follows.

Definition 3.24. A programA under fairness assumptionF suffers fromlivelock if A

suffers from livelock for some trace s∈ TrF.A.

3.2.4 An example

We now relate the definitions above to the example program in Fig. 3.1. We assume

that each process that terminates makes progress, which is formalised by the following

progress function:

(∀p:{X,Y} (∀i:PCp Π.p.i = {τ})).

We are assuming that variablesb andc are shared by processesX andY.

Example 3.25(Individual deadlock). ProcessY in the program of Fig. 3.1, suffers from

individual deadlock becausepcY = 1 c does not hold.
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Init: pcX, pcY, b, c := 1, 1, true, false

ProcessX

1: do b →

2: skip

od ;

3: c := true

τ : {c}

ProcessY

1: if c →

2: b := false

fi

τ :

FIGURE 3.1: Example program

Example 3.26(Individual progress). ProcessX satisfies individual progress because

processY suffers from individual deadlock, and furthermore,[ pcX = i ⇒ gX.Xi ] holds

for all i 6= τ . ProcessY does not satisfy individual progress sincepcY = 1  pcY 6= 1

does not hold.

Example 3.27(Starvation). ProcessY cannot suffer from starvation because3gY.Y1

does not hold. ProcessX does not suffer from starvation becauseX satisfies individual

progress.

Example 3.28(Total deadlock). We prove that the program in Fig. 3.1 does not suffer

from total deadlock using part (1) of Lemma 3.15 (total deadlock (2)). We may perform

case analysis on the values ofpcX. For casespcX ∈ {1, 2}, total deadlock does not

exist because[ pcX ∈ {1, 2} ⇒ gX.XpcX ] holds, whereas casespcX ∈ {3, τ} may be

disregarded because such a state is never reached, i.e.,2(pcX 6∈ {3, τ} holds.

Example 3.29(Livelock). ProcessX suffers from livelock according to the given prog-

ress function becauseX does not terminate.

3.2.5 Discussion

We have formalised progress properties of concurrent programs. We have presented

lemmas that describe the relationships between the variousprogress properties. Lemmas

that help abstract away from the low-level definitions so that progress properties may be

proved more easily are also provided. The relationships between the various progress
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properties are summarised below. For any programA; processp ∈ A.Proc; and traces

s∈ Tr.A andsf ∈ TrSF.A we have:

IndProg(p, s) ⇒ ¬Starve(p, s)

IndProg(p, s) ⇒ ¬IndDead(p, s)

¬Starve(p, s) ∧ ¬IndDead(p, s) ≡ IndProg(p, s)

(∀q:A.Proc Term(q, s)) ⇒ ¬TotDead(s)

(∃q:A.Proc ¬Term(q, s) ∧ IndProg(q, s)) ⇒ ¬TotDead(s)

(∀q:A.Proc IndProg(q, s)) ⇒ ¬TotDead(s)

¬IndDead(p, sf) ≡ IndProg(p, sf)

¬Starve(p, sf)

To the best of our knowledge, liveness properties of concurrent programs have not

been formalised as we have done in this chapter. Lamport [Lam02] describes a frame-

work suitable for specifying both safety and liveness properties, but apart from weak and

strong fairness, no other properties are defined. Feijen andvan Gasteren [FvG99], only

present an informal definitions of starvation, deadlock andindividual progress.

3.3 Non-blocking programs

In this section, we formalise the progress properties of non-blocking programs. Ac-

cording to its progress property, a non-blocking program may be classified as wait-free,

lock-free or obstruction-free. Formal definitions of theseterms have not been provided in

the literature, and hence many interpretations are ambiguous and some are even incorrect

(see Section 3.3.2). We prove a progress hierarchy that wait-free programs are lock-free

(but not vice-versa), and lock-free programs are obstruction-free (but not vice-versa).

In Section 3.3.1 we formalise non-blocking programs and describe some extensions

to our programming model. In Section 3.3.2 we present a survey of the informal defi-

nitions of the progress properties of non-blocking algorithms provided in the literature.
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In Section 3.3.3 we present progress functions for non-blocking programs, and in Sec-

tion 3.3.4 we define wait, lock and obstruction freedom. Finally, in Section 3.3.5, we

relate the different definitions.

3.3.1 Formalising non-blocking programs

Definition 3.30. A program isnon-blockingiff

(∀A
pi

i 6= τ ⇒ [ gp.pi ≡ pcp = i ]). (3.31)

Non-blocking programs use primitives such as load-linked/store-conditional or compare-

and-swap instead of locks. Hence we define a non-blocking conditional ife as follows:

i: ife []u〈Bu → USu〉 ku: LSu

efi

j:

=̂

i: if []u〈Bu → USu〉 ku: LSu

[] 〈
∧

u¬Bu → skip〉

fi

j:

which executes askip if each guardBu evaluates tofalse.

Many real world programs do not specify each process directly as described in Chap-

ter 2. Instead, programs consist of a number of operations that an unspecified, finite

number of concurrent processes execute. For example, a readers-writers program con-

sists of reader and writer operations which are executed in parallel by the processes in

the program. Thus, in the operation/process model, a program, sayA, consists of a

finite set of operations,A.OP:A.Proc → LS, each of which is a labelled statement

parametrised by a process. The operations are executed in parallel by the processes from

A.Proc. Because the labels within a process need to be distinct, we require that each

label in each operation is distinct from the labels in all other operations of the program.

The example program in Fig. 3.2, consists of a finite set of processes, each of which may

execute either of the operations:inc1p andinc100p.

A process may either beactive(is currently executing an operation) oridle (is not

executing any operation). An idle process becomes active ifit invokes an operation, and
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Init: pc, T := (λp:Proc idle), 0

inc1p =̂

e0: exitp := false;

e1: do ¬exitp →

e2: tp := T;

e3: rp := tp + 1;

e4: ife 〈T = tp → T := rp〉

e5: exitp := true

efi

od

inc100p =̂

d0: exitp := false;

d1: do ¬exitp →

d2: tp := T;

d3: rp := tp + 100;

d4: ife 〈T = tp → T := rp〉

d5: exitp := true

efi

od

FIGURE 3.2: A non-blocking program

an active processes becomes idle if the operation it is currently executing completes.

Thus, each processp ∈ A.Proc is a loop that non-deterministically chooses and invokes

an operation at each iteration of the loop, i.e., each process q ∈ A.Proc for a non-

blocking programA is of the form:

q =̂ ∗[ idle: if []op:A.OP true→ opq fi ]

where idle is a special label used to distinguish idle processes1. Processp is idle iff

pcp = idle. Each processq of the program in Fig. 3.2 takes the following form:

q =̂ ∗[

idle: if true→ inc1q

[] true→ inc100q

fi

]

Although the number of processes in the program is finite, an infinite number of oper-

ations can be invoked because each process can cycle foreverbetween idle and active

states.

1One could chooseidle to be a set of labels, but this is not necessary for the purposes of this thesis.
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3.3.2 Informal definitions

We now present a survey of the definitions of wait, lock and obstruction freedom given in

the literature. This allows us to highlight the differencesand ambiguities introduced via

the use of natural language. These definitions are formalised in the subsequent sections.

Wait free

• “A wait-freeimplementation of a concurrent object is one that guarantees that any

process can complete any operation in a finite number of steps” [Her88]

• “An algorithm iswait freeif it ensures that all processes make progress even when

faced with arbitrary delay or failure of other processes.” [HLM03]

• “A lock-free shared object is alsowait freeif progress is guaranteed per operation.”

[Mic04]

• “Wait-freealgorithms guarantee progress of all operations, independent of the ac-

tions performed by the concurrent operations.” [Sun04]

Lock free

• “An object islock freeif it guarantees that some operation will complete in a finite

number of steps.” [MP91b]

• “An algorithm islock freeif it guarantees that some thread always makes progress.”

[HLM03]

• “A shared object islock free if whenever a thread executes some finite number

of steps towards an operation on the object, some thread musthave completed an

operation on the object during execution of these steps.” [Mic04]

• “Lock-freealgorithms guarantee progress of always at least one operation, inde-

pendent of the actions performed by the concurrent operations.” [Sun04]
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Obstruction free

• “A non-blocking algorithm isobstruction freeif it guarantees progress for any

thread that eventually executes in isolation. Even though other threads may be in

the midst of executing operations, a thread is considered toexecute in isolation as

long as the other threads do not take any steps.” [HLM03]

• “The core of anobstruction-freealgorithm only needs to guarantee progress when

one single thread is running (although other threads may be in arbitrary states)”

[SS05]

• “Recently, some researchers also proposedobstruction-freealgorithms to be non-

blocking, although this kind of algorithms do not give any progress guarantees.”

[Sun04]

We do not follow any one of these definitions in particular, and to avoid further

confusion, we do not present our interpretation using natural language. Instead, we

jump straight into formalisation, then relate the definitions presented above to our formal

definitions. However, at this stage we point out that [Mic04]presumes that a wait-free

program is lock-free.

3.3.3 Progress functions

Our formalisation of non-blocking progress properties will use progress functions from

Section 3.2.3. However, because the processes in a non-blocking program are identical

to each other, we may simplify the type of the progress function so that the process id is

not in the domain. Furthermore, because we aim to provide themost generic definition

possible, we do not restrict progress functions toPC values. Hence in a non-blocking

context, aprogress functionhas type:

Π: W → PW. (3.32)

whereW may be a complex type such as a tuple, array, etc., which may beevaluated in

the program state [CD07, CD09]. Progress cannot occur unless the part of the state being
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observed changes, and hence progress functions must satisfy the following property

(∀v:dom(Π) v 6∈ Π.v). (3.33)

As with livelock, by defining wait, lock and obstruction freedom with respect to a prog-

ress function, we are able to define the progress properties of non-blocking programs

without having to refer to the programs themselves.

3.3.4 Wait, lock and obstruction freedom

Definition 3.34 (Wait free). LetA be a non-blocking program; SŜ= A.Proc → W; K

be a state-dependent expression such that(∀s:Tr.A(∀u:dom(s)+ eval.su−1.K 6= eval.su.K));

andΠ be a progress function defined over W. ProgramA is wait freewith respect toΠ

and K iff

(∀p:A.Proc; ss:SSTr.A |= Kp = ssp Kp ∈ Π.ssp). (3.35)

Thus, a program exhibits the wait-free property if each process makes progress inde-

pendently of the other processes. IfK is instantiated topc andW instantiated toA.PC,

(3.35) is equivalent to:

(∀p:A.Proc(∀i:PCp Tr.A |= pcp = i  pcp ∈ Π.i)). (3.36)

That is,A is wait-free iff for every processp in the program and for every valuei 6= τ of

the program counter, given that the recorded value ofpcp is i, a state for which the value

of pcp is in Π.i is eventually reached.

Let us now compare Definition 3.34 to the informal definitionscompiled in Sec-

tion 3.3.2. Definition 3.34 implies the definitions in [HLM03, Mic04, Sun04] because

when (3.35) holds, each process is guaranteed to make progress. For Herlihy’s definition

[Her88], we may constrainΠ, K andW so thatKp ∈ Π.ssp impliespcp = idle, i.e., if

processp makes progress, then it must have completed the operation itis executing. If

we have a proof ofpcp = i  pcp = j, the proof must correspond to a finite number of

statement executions of processp. Thus it follows that each operation terminates after a

finite number of steps.
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Definition 3.37 (Lock free). LetA be a non-blocking program; SŜ= A.Proc → W; K

be a state-dependent expression such that(∀s:Tr.A(∀u:dom(s)+ eval.su−1.K 6= eval.su.K));

andΠ be a progress function defined over W. ProgramA is lock freewith respect toΠ

and K iff

(∀ss:SSTr.A |= K = ss (∃p:A.Proc Kp ∈ Π.ssp)). (3.38)

Lock-freedom only requires that the program as a whole to make progress; although

there may be processes that never make progress. Because lock-freedom is a property

of a program, we need to record a snapshot of the state ofall processes, then show that

oneof these processes makes progress. IfK is instantiated topc, andW instantiated to

A.PC, we obtain:

(∀ss:SSTr.A |= pc = ss (∃p:A.Proc pcp ∈ Π.ssp)).

Thus, given that we record the value of the program counters of all processes inss,

eventually some process makes progress according toΠ.ssp. Because we check allssin

SS, we consider every possible configuration of the program counters.

Let us compare Definition 3.37 with the informal definitions of lock-freedom. We

can relate the definition in [MP91b, Mic04] to Definition 3.37by constrainingK, W, and

Π so thatKp ∈ Π.ssp impliespcp = idle. Note that the definition by Michael [Mic04]

can be misinterpreted to mean: there is a finite number, sayn, such that an operation

is guaranteed to complete when a process has takenn steps. This is clearly incorrect

because no single process is guaranteed to complete their operation. The definition by

Sundell [Sun04] is a rewording of Massalin and Pu’s definition [MP91b] where progress

can occur without a process terminating, and the requirement that a finite number of

steps be taken is removed.

The definition by Herlihy et al [HLM03] implies Definition 3.37, however, the natu-

ral language version is ambiguous. Consider the following expression:

(∃p:A.Proc (∀ss:SSK = ss Kp ∈ Π.ssp)), (3.39)

which is a possible interpretation of the definition by Herlihy et al [HLM03]. However,

(3.39) is an incorrect interpretation of lock freedom because a program that satisfies
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(3.39), requires that there be a distinguished process thatalways makes progress. Condi-

tion (3.39) is stronger than (3.38), which we can see by considering a two process case.

For some program, supposeProc = {q, r} andΠ is the given progress function of the

program.

(3.38)

≡ {Proc = {q, r}}

(∀ss:SSK = ss (Kq ∈ Π.ssq) ∨ (Kr ∈ Π.ssr))

⇚ {Lemma 2.24 (anti-monotonicity)}

(∀ss:SS(K = ss Kq ∈ Π.ssq) ∨ (pc = ss Kr ∈ Π.ssr))

⇚ {logic}

(∀ss:SSK = ss Kq ∈ Π.ssq) ∨ (∀ss:SSK = ss Kr ∈ Π.ssr)

≡ {Proc = {q, r}}

(3.39)

Definition 3.40 (Obstruction free). Let A be a non-blocking program; W be a set;

SS =̂ A.Proc → W; Π be a progress function defined over W; and K be a state-

dependent expression such that(∀s:Tr.A(∀u:dom(s)+ eval.su−1.K 6= eval.su.K)). Program

A is obstruction freewith respect toΠ and K iff

(∀p:Proc; ss:SSTr.A |= K = ss (Kp ∈ Π.ssp ∨ (∃q:Proc p 6= q ∧ Kq 6= ssq))). (3.41)

Our definition of obstruction-freedom follows from the original source [HLM03].

The first part of Herlihy et al’s definition seems to require that there are no other con-

tending (concurrently executing) processes. However, by the second part, and by the

definition in [SS05], we realise that contending processes are allowed as long as they

do not take any steps, i.e., execute any statements. Thus, a program is obstruction free

iff for each processp and snapshotss, it is always the case that ifK = ssthenp either

makes progress or some other process executes a (possibly interfering) statement.

Notice that obstruction-freedom allows processes to prevent each other from making

progress. Unless a process is executing in isolation, no progress guarantees are provided.

An objective of Herlihy et al is the separation of safety and progress concerns during

program development [HLM03]. In their words,
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We believe a clean separation between the two [safety and progress] con-

cerns promises simpler, more efficient, and more effective algorithms.

The definition we have provided allows one to observe this intended separation more

easily and it is now clearer that one half of ensuring progress is concerned with devel-

oping an effective underlying mechanism so that some process eventually executes in

isolation. We leave exploration of the sorts of mechanisms required as a topic for further

work as it lies outside the scope of this thesis.

Comparing Definition 3.40 to those in Section 3.3.2, condition (3.41) is exactly that

of Herlihy et al [HLM03, SS05]. The definition given by Sundell [Sun04] is incorrect

because (3.41) does provide progress guarantees, althoughthey are quite weak.

3.3.5 Relating the properties

In this section we inter-relate the progress properties of non-blocking programs and de-

scribe their relationship to the progress properties of blocking programs.

Theorem 3.42.Any wait-free program is also lock free, but a lock-free program is not

necessarily wait free.

Proof. Let A be a program;Π be a progress function defined overW, SS=̂ A.Proc →

W, andK be a state-dependent expression such that(∀s:Tr.A(∀u:dom(s)+ eval.su−1.K 6=

eval.su.K)). We prove that(3.35) ⇒ (3.38) as follows:

(∀p:A.Proc; ss:SSTr.A |= Kp = ssp Kp ∈ Π.ssp)

⇛ {Lemma 2.24 (anti-monotonicity and monotonicity)}

(∀p:A.Proc; ss:SSTr.A |= K = ss (∃q:A.Proc Kq ∈ Π.ssq)))

≡ {logic}

(∀ss:SSTr.A |= K = ss (∃q:A.Proc Kq ∈ Π.ssq))

To prove that lock freedom does not imply wait freedom, we refer to the proof in

Section 5.4.1, which serves as a counter-example. 2
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Theorem 3.43.Any lock free program is also obstruction free, but an obstruction free

program is not necessarily lock free.

Proof. Let A be a program;Π be a progress function defined overW, SS=̂ A.Proc →

W, andK be a state-dependent expression such that(∀s:Tr.A(∀u:dom(s)+ eval.su−1.K 6=

eval.su.K)).

(∀ss:SSTr.A |= K = ss (∃p:A.Proc Kp ∈ Π.ssp))

⇛ {Lemma 2.24 (monotonicity)}

(∀ss:SSTr.A |= K = ss (∀p:A.Proc Kp ∈ Π.ssp ∨ (∃q:A.Proc q 6= p ∧ Kp ∈ Π.ssq)))

⇛ {logic: p is free inK = ss}

(∀p:A.Proc; ss:SSTr.A |= K = ss Kp ∈ Π.ssp ∨ (∃q:A.Proc q 6= p ∧ Kp ∈ Π.ssq))

⇛ {(3.33)}

(∀p:A.Proc; ss:SSTr.A |= Kp = ssp Kp ∈ Π.ssp ∨ (∃q:A.Proc q 6= p ∧ Kq 6= ssp))

To prove that obstruction freedom does not imply lock freedom, we refer to the proof

in Section 5.4.2, which serves as a counter-example. 2

We now explore the relationships between progress properties of non-blocking and

blocking program, which highlights the benefits of non-blocking synchronisation. Many

of the concerns of blocking programs are trivially satisfied, e.g., a non-blocking program

A does not suffer from individual or total deadlock. Because eachpi 6= pτ is enabled if

pcp = i holds, we obtain the following lemma.

Lemma 3.44. A process p∈ A.Proc in a non-blocking programA satisfies individual

progress in trace s∈ Tr.A iff it does not suffer from starvation in s.

Proof (⇛). By Corollary 3.20.

Proof (⇚). For anys∈ Tr.A andp ∈ A.Proc,

s⊢ ¬(∃i:PCp32(pcp = i) ∧ 23gp.pi))

⇛ {logic}{A is non-blocking,pcp = i ≡ gp.pi}

s⊢ (∀i:PCp23(pcp 6= i) ∨ 32(pcp 6= i))

⇛ {32a ⇒ 23a}

s⊢ (∀i:PCp23(pcp 6= i)) 2
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Under weak fairness, since each process is always enabled, anon-blocking program

trivially satisfies individual progress. This is captured by the following lemma.

Lemma 3.45. A process p∈ A.Proc in a non-blocking programA satisfies individual

progress in each trace s∈ TrWF.A.

Proof. For anyi ∈ PCp ands ∈ TrWF.A, s ⊢ 23(¬gp.pi) holds. Becausep is non-

blocking[ pcp = i ≡ gp.pi ] holds, and hences⊢ 23(pcp 6= i) holds. 2

If we define(∀i:A.PC Π.i = A.PC − {i}), then progress occurs whenever a process

of A takes a step. HenceA is devoid of total deadlock if (3.41) holds, and devoid of

starvation if (3.35) holds. Here,A may be any concurrent program, i.e., is not necessarily

non-blocking.

Lemma 3.46.Any wait-free program satisfies individual progress (see Definition 3.18).

Proof. The proof follows trivially due to (3.33). 2

3.3.6 Discussion

We have presented definitions for the three well known progress properties of non-

blocking programs using the logic of [DG06]. The relationship between wait, lock,

and obstruction-freedom programs has also been established as well as their relation-

ship to blocking progress properties. In a blocking program, proving progress usually

amounts to proving progress past the blocking statements, which provide useful refer-

ence points in stating the required progress property. The fact that no blocking occurs in

a non-blocking program makes stating and proving their progress properties much more

difficult. Furthermore, proofs of properties such as lock freedom are complicated by the

fact that they are program-wide properties, as opposed to per-process.

Colvin and Dongol describe techniques for proving lock freedom, and prove that

a number of complicated algorithms from the literature are lock free [Don06b, CD07,

CD09]. Their techniques are supported by the PVS theorem prover [SSJ+96].
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3.4 Conclusion

Formally describing progress properties of concurrent programs is not an easy task, and

subtle variations in assumptions on the programming model can result in widely varying

proof obligations. By defining the progress properties of a program in a precise and

provable manner, confusion on what is required for a programto have a given progress

property is avoided. A program has a given property precisely when it satisfies the

definition.

We have formalised a number of properties of both blocking and non-blocking pro-

grams and explored relationships between them. In the subsequent chapters, we will use

these definitions to reason about the progress properties ofconcurrent programs in a pre-

cise manner. We develop a theory for proving leads-to properties in Chapter 4, which we

use to verify progress (Chapter 5) and perform progress based derivations (Chapter 7).

Having formal definitions of the technical terms involved forms the basis for tasks at

hand.
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4
A Logic of Safety and Progress

In this chapter we present a logic of safety and progress for the programming model de-

scribed in Chapter 2. We present our definitions at a trace level using LTL. However, as

is widely known, direct proofs of LTL properties is difficult. Hence we reformulate the

safety logic of Owicki and Gries, and the progress logic of UNITY to fit our program-

ming model in Chapter 2. We describe the relationship between the safety and progress

logic to the trace-based semantics, which allows us to conclude that both logics are

sound [DH07]. We make use of the fact that our model allows full representation of the

control state and fairness assumptions of each program. In order to aid program deriva-

tion, our techniques for proving safety and progress are kept calculational, as opposed

to operational. Our logic is able to reason about safety and progress in the presence of

divergence.

65
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Following Dijkstra, we aim to prove safety and progress properties in a calcula-

tional manner, and hence also provide a predicate transformer semantics. Feijen and van

Gasteren [FvG99] have already shown that defining partial correctness (i.e., the weak-

est liberal precondition) is enough for proving safety properties of concurrent programs,

however, in order to effectively reason about progress, both partial correctness and total

correctness of statements need to be addressed [DH07]. Hence we also define the weak-

est precondition predicate transformer. The weakest precondition is used in Chapter 6 to

obtain an ordering on program refinement.

The safety logic is based on the theory of Owicki and Gries [OG76], but follows the

nomenclature of Feijen and van Gasteren [FvG99]. Hence for example, theinterference-

freedomrequirement [OG76] is replaced by theglobal-correctnesscriteria [FvG99]. By

using program counters, we may define assertions as a specialtype of invariant, and

we are able to directly prove properties that normally require introduction of auxiliary

variables (see Section 4.2.3) [OG76, FvG99].

The progress logic is that of UNITY [CM88], based on the nomenclature of Don-

gol and Goldson [DG06], however, our presentation follows that of Dongol and Hayes

[DH07]. This new presentation allows us to separate theorems of LTL from those depen-

dent on the program and explicitly state the fairness assumption of each theorem. Fur-

thermore, we formulate new theorems (Theorems 4.45 and 4.48) that allow one to prove

progress under strong fairness and minimal progress. An important progress property we

consider is individual progress (Section 3.2.2), which we verify in Chapter 5 and ensure

via derivation in Chapter 7. Thus, we also present a number ofspecialised theorems and

lemmas for proving individual progress in a calculational manner [DM06, DM08].

In Section 4.2 we present the safety logic; in Section 4.3, wedescribe how the logic

of progress from UNITY may be incorporated into our extendedformalism; and in Sec-

tion 4.4, we present techniques for proving individual progress.

Contributions. By definingwp andwlp in terms of the operational semantics, we are

able to prove that the predicate transformer definitions of guard and termination have
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their intended meaning. Defining the safety and progress logic using traces, and show-

ing that the safety definitions of Feijen and van Gasteren andprogress definitions of

Chandy and Misra imply the trace-based definitions was suggested by Ian Hayes. Defi-

nition 4.33 and Lemma 4.42 were developed in collaboration with Doug Goldson, how-

ever the treatment in this thesis makes the fairness assumptions clearer, and we have

developed new theorems for proving immediate progress under strong fairness and min-

imal progress. The lemmas in Section 4.4 are based on work done collaboration with

Arjan Mooij [DM06, DM08]. However, Lemma 4.74 is novel, the fairness assumptions

within each theorem and lemma is clarified, and the conditions themselves have been

generalised so that programs with more than two processes may be considered. Further-

more, the presentation in this thesis allows reasoning about incompletely specified code.

We thank Robert Colvin for an earlier proof of Corollary 4.35, which has inspired the

more general Lemma 4.34.

4.1 Predicate transformer semantics

For state spacesΣ andΓ, apredicate transformerfrom Σ to Γ has typeP Γ → P Σ, so

is a function that maps predicates overΓ to predicates overΣ. We present the predicate

transformer semantics of unlabelled and labelled statements in Sections 4.1.1 and 4.1.2,

respectively.

4.1.1 Unlabelled statements

Thewlp (weakest liberal precondition) predicate transformer is defined in terms of the

operational semantics as follows.

Definition 4.1 (Weakest liberal precondition). Theweakest liberal precondition (wlp)

of an unlabelled statement US and a predicate P is the weakestpredicate that needs to

hold before executing US, so that every terminating execution of US results in a state

satisfying P. That is,

(∀σ:Σ (wlp.US.P).σ =̂ (∀σ′:Σ (US, σ)
us ∗
−→ (skip, σ′) ⇒ P.σ′))
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Hence if thewlp of USto establishP holds in stateσ and the reflexive, transitive closure

of
us

−→ results in(skip, σ′), thenP must hold inσ′.

We use notation(x := E).P to denote the simultaneoussubstitutionof eachEu for all

free occurrences ofxu in P, i.e.,

(∀σ:Σ ((x := E).P).σ = P.(σ ⊕ {x 7→ map(eval.σ, E)}))

We use[ P ] to denote “P holds in all states”, i.e.,[ P ] =̂ (∀σ:Σ P.σ), and notation

νX • [ X ≡ f (X) ] to denote the greatest fixed point of the monotonic functionf . The

weakest liberal precondition for unlabelled statements may be obtained using the fol-

lowing lemma [DS90].

Lemma 4.2 (Weakest liberal precondition). For the unlabelled statements defined in

Definition 2.1 and a predicate P, each of the following holds.

1. [ wlp.abort.P ≡ true]

2. [ wlp.skip.P ≡ P ]

3. [ wlp.(x := E).P ≡ (x := E).P ]

4. [ wlp.(x :∈ V).P ≡ (∀x′:V (x := x′).P) ] providedx′ is fresh

5. [ wlp.(US1; US2).P ≡ wlp.US1.(wlp.US2.P) ]

6. [ wlp.IF .P ≡
∧

u (Bu ⇒ wlp.USu.P) ]

7. [ wlp.DO.P ≡ νY • [Y ≡ (B ⇒ wlp.(US1; DO).Y) ∧ (¬B ⇒ P) ] ]

We present the weakest precondition (wp) predicate transformer which allows us to

describe the total correctness of statements [Dij76, DS90].

Definition 4.3 (Weakest precondition). Theweakest precondition (wp)of an unlabelled

statement US and a predicate P is the weakest predicate that needs to hold before exe-

cuting US, so that US is guaranteed to terminate in a state satisfying P. That is,

wp.US.P =̂ wlp.US.P ∧ t.US.
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The definition ofwp for unlabelled statements follows the blocking semantics of

Nelson [Nel89]. We useµ X • [ X ≡ f (X) ] to denote the least fixed point of monotonic

functionf .

Lemma 4.4 (Weakest precondition). For the unlabelled statements defined in Defini-

tion 2.1 and a predicate P, the following holds.

1. [ wp.abort.P ≡ false]

2. [ wp.skip.P ≡ P ]

3. [ wp.(x := E).P ≡ (x := E).P ]

4. [ wp.(x :∈ V).P ≡ (∀x′:V (x := x′).P) ] providedx′ is fresh

5. [ wp.(US1; US2).P ≡ wp.US1.(wp.US2.P) ]

6. [ wp.IF .P ≡
∧

u (Bu ⇒ wp.USu.P) ]

7. [ wp.DO.P ≡ µ Y • [ Y ≡ (B ⇒ wp.(US; DO).Y) ∧ (¬B ⇒ P) ] ]

Note that the only real differences between thewlp and thewp are the definitions

for statementsabort and DO. For a non-terminatingDO statement and predicateP,

wlp.DO.P evaluates totruewhereas thewp.DO.P evaluates tofalse.

Lemma 4.5. For any unlabelled statement US, both of the following hold:

1. [ t.US≡ wp.US.true]

2. [ g.US≡ ¬wp.US.false].

Proof (1). For anyσ ∈ Σ, we have

(wp.US.true).σ

≡ {Definition 4.3}

(wlp.US.true).σ ∧ (t.US).σ

≡ {Definitions 4.1 and 2.4}

(∀σ′:Σ (US, σ)
us ∗
−→ (skip, σ′) ⇒ true.σ′) ∧ (t.US).σ

≡ {logic: (∀σ:Σ true.σ ≡ true)}

(t.US).σ



70 A L OGIC OF SAFETY AND PROGRESS

Proof (2). For anyσ ∈ Σ, we have

(¬wp.US.false).σ

≡ {Definition 4.3}{logic}

¬(wlp.US.false).σ ∨ ¬(t.US).σ

≡ {Definitions 4.1 and 2.4}{logic}

(∃σ′:Σ (US, σ)
us ∗
−→ (skip, σ′) ∧ ¬(false.σ′)) ∨ ((US, σ)

us ∞
−→)

≡ {logic : (∀σ:Σ false.σ ≡ false)}

(∃σ′:Σ (US, σ)
us ∗
−→ (skip, σ′)) ∨ ((US, σ)

us ∞
−→)

≡ {definition ofg.US}

g.US 2

4.1.2 Labelled statements

In this section, we define thewp andwlp of labelled statements. Because the update to

pcp occurs implicitly, we must parametrise both thewp andwlp by the identity of the

process under consideration. We define predicate transformerswlpp andwpp in a similar

manner towlp/wp.

Definition 4.6. For a labelled statement LS1 in process p and a predicate P, we define:

1. (∀σ:Σ (wlpp.LS1.P).σ =̂ (∀σ′:Σ ((LS1, σ)
ls ∗
−→p (id, σ′)) ⇒ P.σ′))

2. [ wpp.LS1.P =̂ wlpp.LS1.P ∧ tp.LS1 ]

For the syntax in Definition 2.5, predicate transformerswlpp andwpp may be ob-

tained in a more direct manner as follows.

Lemma 4.7 (wlpp/wpp). For a labelled statement in a process p and predicate trans-

former trans∈ {wlp, wp}.

1. [ transp.(i: abort).P ≡ pcp = i ⇒ trans.abort .P ]

2. [ transp.(i: 〈US〉 j: ).P ≡ pcp = i ⇒ trans.(US; pcp := j).P) ]

3. [ transp.grd(IFL).P) ≡ pcp = i ⇒
∧

u (Bu ⇒ trans.(USu; pcp := ku).P) ]
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4. [ transp.(LS1; LS2).P ≡ transp.LS1.(transp.LS2.P) ]

5. [ transp.IFL.P ≡ transp.grd(IFL).(
∧

u(pcp = ku ⇒ transp.LSu.P)) ]

6. [ wlpp.DOL.P ≡ νY• [Y ≡ (B ∧ pcp= i ⇒ wlp.(US; pcp :=k).(wlpp.(k: LS1; DOL).Y))

∧ (¬B ∧ pcp = i ⇒ (pcp := j).P)] ]

7. [ wpp.DOL.P ≡ µ Y• [Y ≡ (B ∧ pcp = i ⇒ wp.(US; pcp := k).(wpp.(k: LS1; DOL).Y))

∧ (¬B ∧ pcp = i ⇒ (pcp := j).P)] ]

Lemma 4.8(wlpp/wpp for non-empty frames). Given that the labelled statement under

consideration is in process p; andx has typeT, for a predicate P, the wlpp/wpp is defined

below where trans∈ {wlp, wp}.

1. [ transp.(i: x ·[[abort]]).P ≡ pcp = i ⇒ trans.abort.P ]

2. [ transp.(i: x ·[[〈US〉 j: ]]).P ≡ pcp = i ⇒ trans.(US; x :∈ T; pcp := j).P ]

3. [ transp.(i: x ·[[grd(IFL)]]).P ≡ pcp = i ⇒
∧

u (Bu ⇒

trans.(USu; x :∈ T; pcp := ku).P) ]

4. [ transp.(x ·[[LS1; LS2]]).P ≡ transp.(x ·[[LS1]]; x ·[[LS2]]).P ]

5. [ transp.(x ·[[IFL]]).P ≡

transp.(x ·[[grd(IFL)]]).(
∧

u(pcp = ku ⇒ transp.(x ·[[LSu]]).P)) ]

6. [ wlpp.(x ·[[DOL]]).P ≡

νY • [Y ≡ (B ∧ pcp= i ⇒ wlp.(US; x :∈ T; pcp :=k).(wlpp.(k: x ·[[LS1; DOL]]).Y)) ∧

(¬B ∧ pcp = i ⇒ (x :∈ T; pcp := j).P)] ]

7. [ wpp.(x ·[[DOL]]).P ≡

µ Y • [Y ≡ (B ∧ pcp = i ⇒ wp.(US; x :∈ T; pcp := k).(wpp.(k: x ·[[LS1; DOL]]).Y)) ∧

(¬B ∧ pcp = i ⇒ (x :∈ T; pcp := j).P)] ]

Because updates to program counters are implicit, we may take pcp = i to mean

“control of processp is at the control point labelledi”. Hence any atomic statement

i: 〈S〉 j: in a process, sayp, is equivalent toi: 〈if pcp = i → Sfi〉 j:. Note that axioms (A1)

and (A2) in Section 2.3.2 that are required to define the meaning of a control predicate

now become derived rules of the program counters model.
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Definition 4.9 (Strict, Conjunctive, Disjunctive). Suppose P and Q are predicates. We

say an labelled statement LS1 in process p isstrict iff [ wpp.LS1.false≡ false], conjunc-

tive iff [ wpp.LS1.(P ∧ Q) ≡ wpp.LS1.P ∧ wpp.LS1.Q ] anddisjunctiveiff [ wpp.LS1.(P ∨

Q) ≡ wpp.LS1.P ∨ wpp.LS1.Q ].

Like unlabelled statements,tp andgp may be obtained fromwpp as described by the

following lemma.

Lemma 4.10.For a labelled statement LS1 in process p, each of the following holds:

1. [ tp.LS1 ≡ wpp.LS1.true]

2. [ gp.LS1 ≡ ¬wpp.LS1.false]

Proof. The proof is analogous to the proof of Lemma 4.5. 2

For a processp and label statementLS1 in p, statementLS1 is enabledif gp.LS1

holds andblockedif ¬gp.LS1 holds. Calculating the guard and termination of an atomic

statement that does not contain any loops is straightforward.

Example 4.11(Guard, Termination). For a processp, suppose

LS1 =̂ i: 〈if B → skip[]C → skip fi〉 j:

The guard ofLS1 is calculated as follows:

¬wpp.LS1.false

≡ {definition ofwp for labelled statements}

¬(pcp = i ⇒ wp.(if B → skip[]C → skip fi).((pcp := j).false))

≡ {logic}{definition ofwp for unlabelled statements}

pcp = i ∧ ¬((B ⇒ false) ∧ (C ⇒ false))

≡ {logic}

pcp = i ∧ (B ∨ C)

HenceLS1 is enabled in any state that satisfiespcp = i ∧ (B ∨ C). The termination of

LS1 is calculated as follows:
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pcp = i ⇒ wpp.LS1.true

≡ {definition ofwp for labelled statements}

pcp = i ⇒ wp.(if B → skip[]C → skip fi).((pcp := j).true)

≡ {definition ofwp for unlabelled statements}

pcp = i ⇒ ((B ⇒ true) ∧ (C ⇒ true))

≡ {logic}

true

HenceLS1 is guaranteed to terminate from any state.

4.2 A logic of safety

A popular and much referenced theory for verifying the safety properties of concurrent

programs is that of Owicki and Gries [OG76]. The method, alsoknown as the “mod-

ular method of proving invariants” [Qiw96], supercedes thepreviously existing global

invariant method of Ashcroft [Ash75]. The interference freedom condition proposed by

Owicki and Gries allows one to decompose global invariants so that a number of smaller

proof obligations are proved instead. This avoids thestate-explosion problemwhere

global invariants become infeasibly large. Annotations asused by Owicki and Gries

provide a convenient manner in which verification of large invariants are decomposed

into smaller and more localised proofs.

We present a theory for proving safety in Sections 4.2.1 and 4.2.2, and present an

example verification of a safety property in Section 4.2.3.

4.2.1 Stable predicates and invariants

An annotationof a program represents the program’s proof outline and consists of a

collection ofinvariantsandassertions. A program’s annotation may be proved using the

theory of Owicki and Gries [OG76], however, in order to facilitate program derivation,

our presentation is based on the nomenclature of Feijen and van Gasteren [FvG99]. We

have incorporated program counters and defined an operational semantics for the model,
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thus, we present definitions based on program traces. The relationship to the theory of

Owicki and Gries is then established via a number of lemmas. Our approach provides

several advantages. In the approach of Feijen and van Gasteren, a predicate is invariant

iff it is maintained by every program statement, even those that are unreachable. By

defining invariants in terms of traces, we are able to implicitly remove unreachable states

from consideration. Furthermore, because we regard an assertion to be a special type of

invariant, we are able to decouple assertions from the proofoutline.

We define a stable predicate in terms of traces and relate it todefinitions of Chandy

and Misra [CM88] via Lemma 4.14. Recall that for a sequences, we usedom(s)+ =

dom(s) − {0}.

Definition 4.12 (Stable). A predicate P isstablein trace s∈ Tr.A under process p∈

A.Proc, denoted s⊢ stp.P, iff

(∀u:dom(s)+ su−1 →֒p su ∧ P.su−1 ⇒ su 6= ↑ ∧ P.su).

P isstablein programA, denoted stA.P, iff (∀p:A.Proc Tr.A |= stp.P).

A predicate is stable in a process if it cannot be falsified by the process, although, it may

initially be false and become true. However, because a stable predicate need not hold at

the start of execution, the predicate may never hold. Note that if transitionsu−1 →֒p su

causes the program to diverge, i.e.,su = ↑ andP.su−1 holds, thenp is not stable under

processp. Hence a program with a divergent trace does not have any stable predicates,

includingtrueandfalse.

Definition 4.13 (Invariant). Predicate P is aninvariantof programA iff Tr.A |= 2P.

We now present lemmas that relate invariants and stable predicates to the trace-based

semantics. We recall that we assumeA.Init terminates, and hence for anys ∈ Tr.A,

s0 6= ↑.

Lemma 4.14(Stable). SupposeA is a program; I is an invariant ofA; p ∈ A.Proc is a

process ofA. A predicate P isstable inp, denoted stp.P, if

(∀i:PCp [ I ∧ P ⇒ wpp.pi .P ]). (4.15)
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Proof. Supposes∈ Tr.A andu ∈ dom(s)+.

su−1 →֒p su ∧ P.su−1 ⇒ P.su

⇚ {definition of →֒p}{I is an invariant ofA}

(∃i:PCp (pi, su−1)
ls

−→p (p′
i , su)) ∧ (I ∧ P).su−1 ⇒ P.su

⇚ {(4.15)}

(∀i:PCp (pi, su−1)
ls

−→p (p′
i , su)) ∧ (wpp.pi .P).su−1 ⇒ P.su

≡ {Lemma 2.9}

(∀i:PCp (pi, su−1)
ls

−→p (id, su)) ∧ (wpp.pi .P).su−1 ⇒ P.su

⇚ {Definition 4.6}

true 2

Lemma 4.16. For a programA and predicate P, if[ wlp.(A.Init).P ], then(∀s:Tr.A P.s0)

holds.

Proof.

[ wlp.(A.Init).P ]

≡ {definition of[ Q ]}

(∀σ:Σ wlp.(A.Init).P.σ)

≡ {Definition 4.1}

(∀σ,σ′:Σ (A.Init, σ)
us ∗
−→ (skip, σ′) ⇒ P.σ′)

⇛ {definition of initial(A)}

(∀σ′:initial(A) P.σ′)

⇛ {Definition 2.12 (trace)}

(∀s:Tr.A P.s0) 2

Lemma 4.17. For a programA and predicate P, if[ wlp.(A.Init).P ] and stA.P hold,

thenTr.A |= 2P holds.

Proof. Supposes∈ Tr.A. By Lemma 4.16,P.s0. For anyu ∈ dom(s)+ assumeP.su−1.

BecausestA.P, P.su holds, and hences⊢ 2P. Furthermore, we have chosen an arbitrary

s, and henceTr.A |= 2P holds. 2

The following lemma allows us to prove that a predicate is invariant in a calculational

manner. Feijen and van Gasteren present conditions for the lemma as the definition of
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an invariant [FvG99], however, due to the possibility of divergence, we must strengthen

from wlp to wp within (4.20) to handle safety and progress.

Lemma 4.18(Invariant). LetA be a program and predicate I be an invariant ofA. A

predicate P is an invariant ofA if:

[ wlp.(A.Init).P ] (4.19)

(∀A
pi

[ I ∧ P ⇒ wpp.pi.P ]). (4.20)

Proof. The result follows by Lemma 4.17 because by Lemma 4.15, (4.20) impliesstA.P.

2

When using Lemma 4.18 (invariant) to prove that a predicate is invariant, one of-

ten needs to strengthen the invariant to include auxiliary information about the program.

Such a strengthening is permitted by the monotonicity ofwp, i.e., one may prove a pred-

icate is invariant by proving invariance of a stronger predicate. Furthermore, becausewp

is conjunctive, a conjunction of predicates may be established by proving invariance of

each conjunct independently.

4.2.2 Correct assertions

In the theory of Owicki and Gries, a program’s annotation is tightly integrated with its

proof1 [OG76, AO91, FvG99], which means one must treat invariants and assertions

differently. Because we have incorporated program counters in our framework, we are

able to reformulate the theory of Owicki and Gries [OG76, FvG99] in terms of invariants.

An assertionP in processp that holds at control pointi is equivalent to stating “P holds

whenever control of processp is at i”, which is equivalent to invariantpcp = i ⇒

P. Thus, assertions in a program simply become a notational convention for program

invariants. We may choose one over the other based on readability concerns.

Definition 4.21 (Correct assertion). SupposeA is a program, p∈ A.Proc is a process,

i ∈ PCτ
p is a label. Predicate P is acorrect assertionat pi iff Tr.A |= 2(pcp = i ⇒ P).

1In fact, the annotation of a program is often referred to as the proof outline of the program.
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As with invariants, assertions may be proved correct using the technique in [FvG99].

An assertion in a process must first be correct within the process, a notion that Feijen

and van Gasteren [FvG99] refer to as “local correctness”. That is, if assertionP occurs

in processp at control pointi, execution ofp must establishP at i. In a concurrent

environment due to the possibility of interference from other processes Owicki and Gries

[OG76] require an “interference freedom” proof obligationto ensure that an assertion is

correct against the execution of other processes. Feijen and van Gasteren re-interpret

interference freedom as the “global correctness” requirement. That is, if assertionP

occurs within processp, execution of any processq other thanp must maintainP. We

present our definitions of local and global correctness using traces, then relate them to

those given by Feijen and van Gasteren using Lemma 4.25.

Definition 4.22 (Locally correct assertion). Suppose P is an assertion at control point i

in process p∈ A.Proc and s∈ Tr.A. P is locally correctin s, denoted s⊢ LC pi .P iff

(pcp = i ⇒ P).s0 ∧ (∀u:dom(s)+ su−1 →֒p su ⇒ (pcp = i ⇒ P).su).

P is locally correctin programA iff Tr.A |= LC pi .P.

Thus, if assertionP occurs at the start of processp, and(pcp = i).s0, thenP.s0 must

hold. Furthermore, ifp transitions fromsu−1 to su, and(pcp = i).su holds, thenP.su must

also hold.

A globally correct assertion in a process is a predicate thatmay not be falsified by

the other processes in the program. We define a globally correct assertion in terms of a

stable predicate.

Definition 4.23 (Globally correct assertion). Suppose P is an assertion at control point

i in process p∈ A.Proc and s∈ Tr.A. P is globally correctin trace s, denoted s⊢

GCpi .P, iff

(∀q:A.Proc−{p} s⊢ stq.(pcp = i ⇒ P)).

P is globally correct in programA iff Tr.A |= GCpi .P.
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According to Feijen and van Gasteren [FvG99], an assertion is correct if it is both

locally correct and globally correct, (although this postulation is not proved). Using our

trace-based definitions, we may easily relate local and global correctness to the notion

of a correct assertion.

Lemma 4.24(Correct assertion). Given a programA, an assertion P in process p∈

A.Proc at control point i ∈ PCτ
p is correct if it is both locally correct and globally

correct.

Proof. Supposes∈ Tr.A. We will show thats⊢ 2(pcp = i ⇒ P) using induction on the

indices ofs. The base case holds becauses⊢ LC pi .P holds, and hence(pcp = i ⇒ P).s0

holds. Foru ∈ dom(s)+, suppose(pcp = i ⇒ P).su−1 holds and consider transition

su−1 →֒A su. We perform case analysis on transitions performed by processpand process

q 6= p.

su−1 →֒p su

≡ {case analysis}

su−1 →֒p su ∧ ((pcp 6= i).su ∨ (pcp = i).su)

⇛ {logic}{s⊢ LC pi .P}

(pcp = i ⇒ P).su

su−1 →֒q su

⇛ {assumption(pcp = i ⇒ P).su−1}

su−1 →֒q su ∧ (pcp = i ⇒ P).su−1

⇛ {s⊢ GCpi .P}

(pcp = i ⇒ P).su 2

Feijen and van Gasteren [FvG99] define a correct assertion using conditions similar

to (4.26), (4.27) and (4.28) below, but without program counters. However, although

their conditions allow one to prove correctness in a calculational manner (aiding pro-

gram derivation) it is not obvious whether or not their definitions capture the intended

meaning. We use the Lemma 4.25 below to show that the calculational proof obligations

imply their trace-based counterparts.
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Lemma 4.25(Locally correct, Globally correct). Let A be a program and predicate I

be an existing invariant ofA. A predicate P in process p∈ A.Proc at control point

i ∈ PCτ
p is a locally correct assertionif

[ wlp.(A.Init).(pcp = i ⇒ P) ] (4.26)

(∀j:PCτ

p
[ I ⇒ wpp.pj.(pcp = i ⇒ P) ]) (4.27)

Predicate P at control point pi is globally correct if

(∀A
qj

q 6= p ⇒ [ I ∧ pcp = i ∧ P ⇒ wpq.qj.P ])). (4.28)

Proof. The local correctness part is trivial using the trace-baseddefinitions ofwp, while

the global correctness part is trivial if the following holds:

(∀A
qj

q 6= p ⇒ [ I ∧ (pcp = i ⇒ P) ⇒ wpq.qj.(pcp = i ⇒ P) ])).

We have the following calculation:

I ∧ (pcp = i ⇒ P) ⇒ wpq.qj.(pcp = i ⇒ P)

⇚ {wp is monotonic}

I ∧ (pcp = i ⇒ P) ⇒ wpq.qj.(pcp 6= i) ∨ wpq.qj .P

≡ {qj cannot modifypcp}

I ∧ (pcp = i ⇒ P) ⇒ pcp 6= i ∨ wpq.qj.P

≡ {logic}

I ∧ P ∧ pcp = i ⇒ wpq.qj.P 2

A common strategy for obtaining a correct assertion is to strengthen the annotation,

e.g., replacing{P}S (where{P}S denotes statementS with pre-assertionP) by {P ∧

Q}S. Following Feijen and van Gasteren [FvG99], we use notation{P}{Q}Sto denote

{P ∧ Q}S. Here, Q is referred to as aco-assertionof P and vice versa. Because

assertions are essentially invariants, correctness of each co-assertion may be established

independently. Introducing a new assertion maintains correctness of previous assertions,

and typically the weakest possible strengthening that serves the goal is calculated.

The following lemma states that an invariant of the formpcp = i ∧ pcq = j ⇒ P

holds if any execution ofp that establishespcp = i also establishesP, and similarly for

q. The lemma is inspired by a technique for avoiding total deadlock [Fei05].
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Lemma 4.29(Invariant consequent). Given a programA; processes p, q ∈ A.Proc;

labels i∈ PCτ
p, j ∈ PCτ

q predicate pcp = i ∧ pcq = j ⇒ P is an invariant ofA if

(∀k:PCp [ pcp = k ∧ pcq = j ⇒ wpp.pk.(pcp = i ⇒ P) ]) (4.30)

(∀k:PCq [ pcp = i ∧ pcq = k ⇒ wpq.qk.(pcq = j ⇒ P) ]) (4.31)

and all processes different from p and q maintain P.

The following lemma on program counters provides a healthiness condition forpcp.

Lemma 4.32(Program counter). Given a programA and a process p∈ A.Proc, for

each i∈ PCτ
p, pcp = i is a correct assertion at control point pi.

Proof. Local correctness ofpcp = i follows from the definitions of local correctness

andwpp, while global correctness follows becausepcp is a local variable ofp. Hence by

Lemma 4.24 (correct assertion),pcp = i is correct. 2

Following Feijen and van Gasteren [FvG99], we usequeried assertionsto denote

assertions in the program that have not yet been proved correct. An assertion that is

neither proved to be locally nor globally correct is identified using ‘?’. Notation ‘?LC’

denotes an assertion that is proved to be globally correct but not locally correct and

‘?GC’ denotes an assertion that is proved to be locally correct, but not globally correct.

Similarly, invariants may also be queried.

4.2.3 An example safety verification

To make the foregoing discussion more concrete, we consideran example verification

of the program in Fig. 4.1, wherex is a shared variable. The safety requirement of the

program is that when both processes have terminated, variable x has the value of2, which

is formalised by the following invariant:

Safe =̂ pcX = τ ∧ pcY = τ ⇒ x = 2.

We note that in the framework of Owicki and Gries, not only is predicateSafedifficult

to formalise, its proof requires the introduction auxiliary variables [OG76, FvG99]. In

our model, this auxiliary information is implicitly captured by the program counters.
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Init: x, pcX, pcY := 0, 1, 1

ProcessX

1: x := x + 1

τ :

ProcessY

1: x := x + 1

τ :

FIGURE 4.1: Example program

To prove that the program in Fig. 4.1 satisfiesSafe, we start by performing awp

calculation against the two program statements. Recall that we assume assignments are

atomic.

Safe⇒ wpX.X1.Safe

≡ {definition ofwp}

Safe∧ pcX = 1 ⇒ (pcY = τ ⇒ x = 1)

≡ {pcX = 1 ⇒ Safe}{logic}

pcX = 1 ⇒ (pcY = τ ⇒ x = 1)

Although this does not prove thatSafeis invariant, the calculation elucidates conditions

required forSafeto hold, i.e., we must introduce assertionpcY = τ ⇒ x = 1 at X1. By

Lemma 4.25 (locally correct) local correctness of this assertion already holds because

Init falsifiespcY = τ . Following the symmetric calculation for statementY1, we obtain

the annotated program below.

Init: x, pcX, pcY := 0, 1, 1

ProcessX

1: {?GC pcY = τ ⇒ x = 1}

x := x + 1

τ :

ProcessY

1: {?GC pcX = τ ⇒ x = 1}

x := x + 1

τ :

We prove global correctness of the queried assertion atX1 using Lemma 4.25 (globally

correct), which requires that we perform the following calculation:

pcX = 1 ∧ (pcY = τ ⇒ x = 1) ⇒ wpY.Y1.(pcY = τ ⇒ x = 1)
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≡ {logic}{definition ofwpY}

pcX = 1 ∧ (pcY = τ ⇒ x = 1) ∧ pcY = 1 ⇒ (true⇒ x = 0)

⇚ {logic}

pcX = 1 ∧ pcY = 1 ⇒ x = 0

Thus, although global correctness does not hold, the calculation suggests that assertion

pcY = 1 ⇒ x = 0 should be introduced as a co-assertion to the assertion atX1. The new

assertion may be proved correct using Lemma 4.24 (correct assertion), which results in

the following annotated program. Hence we may conclude thatSafeis an invariant of

the program.

Init: x, pcX, pcY := 0, 1, 1

ProcessX

1: {pcY = τ ⇒ x = 1}

{pcY = 1 ⇒ x = 0}

x := x + 1

τ :

ProcessY

1: {pcX = τ ⇒ x = 1}

{pcX = 1 ⇒ x = 0}

x := x + 1

τ :

We note thatx > 0 is stable in the program (but not invariant), whilex ≥ 0 is

invariant (and thus stable).

4.3 A logic of progress

In this section we present a progress logic for our formalism. In Section 4.3.1 we moti-

vate the choice of formalism. In Section 4.3.2 we describe how the UNITY logic may be

incorporated into our model so that leads-to properties canbe proved without resorting

to LTL.

4.3.1 Motivation

The step from standard predicate logic to LTL represents an increase in complexity,

which is why Feijen and van Gasteren refused to take it. In their words,
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. . . powerful formalisms for dealing with progress are available. However,

the thing that has discouragedus from using them in practice is that they

bring about so much formal complexity. ... We have decided toinvestigate

how far we can get in designing multiprograms without doingformal justice

to progress. . . [FvG99, p79]

Other authors, while taking the step, fully recognise its significance. For instance, Lam-

port writes

TLA differs from other temporal logics because it is based onthe principle

that temporal logic is a necessary evil that should be avoided as much as pos-

sible. Temporal formulas tend to be harder to understand than formulas of

ordinary first-order logic, and temporal logic reasoning ismore complicated

than ordinary mathematical reasoning. [Lam94, p917]

Caution in the face of this added complexity has recommendedto us the approach

taken in UNITY [CM88], in which the assertion ‘P leads-toQ’ formalises an important

class of progress requirements called ‘eventuality’ requirements. The progress logic of

UNITY is appropriate for two reasons:

• the rules capture the LTL notion of leads-to [GP89, Pac92], thus support reasoning

about progress without resorting to informal reasoning, and

• the rules are simple to use (relative to comparable program logics such as Schnei-

der and Lamport [Sch97, Lam94]).

At the same time, we turn away from the UNITY programming model because it lacks

all notion of a control state, which makes (what should be simple) conventional sequen-

tial programming much harder. Fundamental operators such as sequential composition

cannot easily be represented [SdR94].

We have found that LTL [MP92], due to its rich set of operators, makes it easy

to specify liveness properties, and the resulting specifications tend to closely match the

intuitive understanding. However, proving LTL formulas directly is complicated because
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it requires analysis of all possible execution traces. On the other hand, the progress logic

of UNITY is only suitable for specifying a subset of LTL properties, but proving that a

program satisfies these properties is much easier. Hence we provide a framework that

encodes all of LTL so that any property of a program’s trace may be expressed, yet also

provide techniques (like Chandy and Misra) for proving leads-to properties. We aim to

keep our proofs calculational, in a manner that suits program derivation.

4.3.2 The progress logic

We now present our progress logic and prove its soundness with respect to LTL. The

basis of the progress logic in [CM88, DG06] is the unless (un) relation which we define

as follows.

Definition 4.33(Unless). SupposeA is a program; P, Q are predicates and p∈ A.Proc

is a process. We say PunlessQ holds in p, denoted Punp Q, iff there exists an invariant

I of A such that

(∀i:PCp [ I ∧ P ∧ ¬Q ⇒ wpp.pi.(P ∨ Q) ]).

We say PunlessQ holds inA, denoted PunA Q, iff (∀p:A.Proc P unp Q) holds.

Thus, a program satisfiesP unA Q if for each atomic statementpi in the program,

execution ofpi from a state that satisfiesP ∧ ¬Q ∧ pcp = i is guaranteed to terminate

in a state that satisfiesP ∨ Q, i.e., eitherP continues to hold, orQ is established. Note

that if I ∧ P ∧ ¬Q implies¬gp.pi, then the condition forP un Q holds trivially forpi.

Note that if Tr.A |= PW false holds, thenTr.A |= 2P must be true, i.e.,P is

an invariant ofA. However, if P unA false holds, then we cannot conclude thatP

holds initially. ForP to be an invariant ofA, we require that bothP unA falseand

[ wlp.(A.Init).P ] to hold. This difference betweenPW Q andP unA Q is highlighted by

Corollary 4.35 (unless) below. We first prove a lemma, which states that if(P ∧ ¬Q).tu

holds in a tracet, andP unA Q holds, thenPW Q holds for the rest of the trace.

Lemma 4.34.Given a programA, if P and Q are predicates such that PunA Q holds;

t ∈ Tr.A is a trace ofA; and (P ∨ Q).tu for some u∈ dom(t), then(t, u) ⊢ PW Q.
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Proof. Supposet ∈ Tr.A. We perform case analysis on whether or notQ.tv holds for

somev ∈ dom(t). BecauseI is invariant,(∀v:dom(t) I .tv) holds.

Case(∃v:dom(t) v ≥ u ∧ Q.tv). If Q.tu holds, i.e.,v = u, then(t, u) ⊢ PW Q and we are

done, hence assume¬Q.tu. We have

(∃v:dom(t) v ≥ u ∧ Q.tv)

≡ {assumption¬Q.tu}{takev to be the smallestv such thatQ.tv holds}

(∃v:dom(t) v ≥ u ∧ Q.tv ∧ (∀w:u..v−1 (¬Q).tw))

⇛ {assumption(P ∨ Q).tu}

{inductive application ofP unA Q}{I is invariant}

(∃v:dom(t) v ≥ u ∧ Q.tv ∧ (∀w:u..v−1 (I ∧ P ∧ ¬Q).tw))

⇛ {definition ofU}

(t, u) ⊢ PU Q

⇛ {definition ofW}

(t, u) ⊢ PW Q

Case¬(∃v:dom(t) v ≥ u ∧ Q.tv). By logic, this is equivalent to

(∀v:dom(t) v ≥ u ⇒ (¬Q).tv)

⇛ {assumption(P ∨ Q).tu}{inductive application ofP unA Q}

(∀v:dom(t) v ≥ u ⇒ (P ∧ ¬Q).tv)

⇛ {logic}{definition of2}

(t, u) ⊢ 2P

⇛ {definition ofW}

(t, u) ⊢ PW Q 2

Corollary 4.35 (Unless). Given a programA, if P and Q are predicates such that

[ wlp.(A.Init).(P ∨ Q) ] (4.36)

P unA Q (4.37)

thenTr.A |= PW Q.

Proof. The proof follows by Lemma 4.34 because(P ∨ Q).t0 holds for any tracet ∈

Tr.A. 2
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Note thatP unA Q does not guarantee thatQ will ever hold, for (an extreme) exam-

ple, true unA Q holds for allQ, includingfalse.

Lemma 4.38(Stable (2)). Suppose P is a predicate,A is a program, and p is a process.

Then,

1. stp.P ≡ P unp false

2. stA.P ≡ P unA false.

Lemma 4.39. SupposeA is a program with invariant I; p∈ A.Proc is a process; and

P, Q, and R are predicates such that[Q ⇒ R]. Then,

1. if P unp Q holds, then Punp R holds, and

2. if P unA Q holds, then PunA R holds.

Proof (1).

P unp Q

≡ {definition ofunp}

(∀i:PCp [ I ∧ P ∧ ¬Q ⇒ wpp.pi .(P ∨ Q) ])

⇛ {assumption[ Q ⇒ R], i.e., [¬R⇒ ¬Q ]}

(∀i:PCp [ I ∧ P ∧ ¬R⇒ wpp.pi .(P ∨ R) ])

≡ {definition ofunp}

P unp R

Proof (2).

P unA Q

≡ {definition ofunA}

(∀p:A.Proc P unp Q)

⇛ {part (1)}

(∀p:A.Proc P unp R)

≡ {definition ofunA}

P unA R 2
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Thus, if P is stable in processp, thenP unp Q holds for any predicateQ (similarly

programA). We note thatP unA Rcannot be proved usingQ unA R and[ P ⇒ Q ].

The next lemma allows one to simplify the proof ofP unp Q. Namely, ifI ∧ P ∧ ¬Q

implies that some statementpi is enabled and execution ofpi establishesP ∨ Q, then the

rest of the statements withinp may be ignored.

Lemma 4.40. SupposeA is a program with invariant I and p∈ A.Proc is a process.

For predicates P and Q, if

(∃i:PCτ

p
[ I ∧ P ∧ ¬Q ⇒ gp.pi ∧ wpp.pi.(P ∨ Q) ]) (4.41)

then Punp Q holds.

Proof.

(∀j:PCτ

p
[ I ∧ P ∧ ¬Q ⇒ wpp.pj .(P ∨ Q ]))

≡ {case analysis}

(∃i:PCτ

p
(∀j:PCp−{i} [ I ∧ P ∧ ¬Q ⇒ wpp.pj.(P ∨ Q) ]) ∧

[ I ∧ P ∧ ¬Q ⇒ wpp.pi.(P ∨ Q) ])

⇚ {(gp.S⇒ wpp.S.X) ≡ wpp.S.X}{(4.41)}

(∃i:PCτ

p
(∀j:PCp−{i} [ I ∧ P ∧ ¬Q ∧ gp.pj ⇒ wpp.pj .(P ∨ Q) ]) ∧ true)

⇚ {(4.41), i.e.,I ∧ P ∧ ¬Q ⇒ gp.pi}

(∃i:PCτ

p
(∀j:PCp−{i} [ I ∧ P ∧ ¬Q ∧ gp.pi ∧ gp.pj ⇒ wpp.pj.(P ∨ Q) ]) ∧ true)

⇚ {i 6= j ∧ gp.pi ⇒ ¬gp.pj}

true 2

To guarantee that a property is eventually established, Dongol and Goldson define

immediate progress[DG06] (ensuresin UNITY [CM88]) as the base case for the defi-

nition of leads-to. The rest of their definition consists of the transitivity rule (see The-

orem 2.22) and the disjunction rule (see Theorem 2.23). These definitions implicitly

assume weak fairness.

We have shown that transitivity and disjunction are theorems of LTL (Theorems 2.22

and 2.23), which do not assume weak fairness. However, immediate progress, which al-

lows one to proveP Q without resorting to LTL depends on the program in consider-

ation. In this thesis, we present immediate progress as a theorem that relates conditions
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on the program to the LTL definition of leads-to (Definition 2.21). This treatment is

more general than that of Chandy and Misra, and Dongol and Goldson because the the-

orem proves soundness of the immediate progress conditions, and because the fairness

assumptions can be made explicit in the theorem. We present aversion of immediate

progress under weak fairness Theorem 4.42, and additional theorems under strong fair-

ness (Theorem 4.45) and under minimal progress (Theorem 4.48).

Theorem 4.42(Immediate progress under weak fairness). SupposeA is a program; I is

an invariant ofA; and P, Q are predicates. Then,TrWF.A |= P Q holds provided

P unA Q (4.43)

(∃A
pi

[ I ∧ P ∧ ¬Q ⇒ gp.pi ∧ wpp.pi.Q ]). (4.44)

Proof. 2 By Lemma 2.25 (contradiction), we may equivalently proveTrWF.A |= P ∧

¬Q  Q. Assumingt ∈ TrWF.A, we perform case analysis on whether or not the

antecedent of (4.44) is established int. Given an arbitraryu ∈ dom(t), we have:

Case(t, u) ⊢ ¬3(P ∧ ¬Q).

(t, u) ⊢ ¬3(P ∧ ¬Q)

≡ {logic}

(t, u) ⊢ 2(¬P ∨ Q)

≡ {logic}

(t, u) ⊢ 2(P ⇒ Q)

⇛ {a ⇒ 3a}{definition of }

(t, u) ⊢ P Q

Case(t, u) ⊢ 3(P ∧ ¬Q).

2On proving Theorem 4.42 (immediate progress under weak fairness), we discovered an error in the

definition of un in [DG06]. In [DG06], P unA Q holds if P ∧ ¬Q ⇒ wlp.S.(P ∨ Q) holds for all

statementsS in A. However, partial correctness provided bywlp is not enough to guarantee thatP  Q

holds. For Theorem 4.42 (immediate progress under weak fairness), untilpi is executed, all processesq

different fromp must establishP ∨ Q. However ifP unA Q is defined using thewlp, then a statement in

q might not terminate wherebyP Q will not hold.
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(t, u) ⊢ 3(P ∧ ¬Q)

≡ {definition of3}

(∃v:dom(t) v ≥ u ∧ (P ∧ ¬Q).tv)

⇛ {Lemma 4.34 using (4.43)}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ PW Q)

⇛ {definition ofW}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ PU Q ∨ 2(P ∧ ¬Q))

⇛ {(4.44)}{I is invariant}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ PU Q ∨ 2gp.pi)

⇛ {t ∈ TrWF.A, (3.2)}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ PU Q)

⇛ {aU b ⇒ 3b}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ 3Q)

⇛ {definition of3}

(t, u) ⊢ 33Q

⇛ {33a ≡ 3a}{logic}

(t, u) ⊢ P ⇒ 3Q

The above holds for anyt ∈ TrWF.A andu ∈ dom(t), and henceTrWF.A |= P Q. 2

To make sense of the Theorem 4.42 (immediate progress under weak fairness) we

provide these interpretative notes.TrWF.A |= P  Q is justified on the basis of being

able to execute a continually enabled atomic statement thatestablishesQ. The theorem

formalises this because we can be assured thatP remains true as long as¬Q is true due

to P unA Q. Second, we establish that control of processp is at an atomic statementpi,

thatpi is enabled whenP ∧ ¬Q is true, and that execution ofpi makesQ true. It follows

from P unA Q thatpi is continually enabled as long as¬Q is true and because we are

assuming weak fairness, thatpi must eventually be executed wherebyQ is established.

Theorem 4.45(Immediate progress under strong fairness). SupposeA is a program; I

is an invariant ofA; and P, Q are predicates. Then,TrSF.A |= P  Q holds if the
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following hold:

P unA Q (4.46)

[ I ∧ P ∧ ¬Q ⇒ (∃A
pi

gp.pi ∧ wpp.pi.Q) ] (4.47)

Proof. Supposet ∈ TrSF.A. For someu ∈ dom(t), we may discharge case(t, u) ⊢

¬3(P ∧ ¬Q) in the same manner as in Theorem 4.42. For case(t, u) ⊢ 3(P ∧ ¬Q), we

have the following calculation.

(t, u) ⊢ 3(P ∧ ¬Q)

≡ {definition of3}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ P ∧ ¬Q)

⇛ {(4.46)}{Lemma 4.34}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ PW Q)

≡ {definition ofU}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ 2(P ∧ ¬Q) ∨ PU Q)

⇛ {I is invariant}{a ⇒ 3a}{PU Q ⇒ 3Q}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ 23(I ∧ P ∧ ¬Q) ∨ 3Q)

≡ {(4.47)}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ 23(∃A
pi

gp.pi ∧ wpp.pi.Q) ∨ 3Q)

≡ {23(∃x:T P) ≡ (∃x:T 23P) for finite T}{A.Proc andPCp are finite}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ (∃A
pi

23(gp.pi ∧ wpp.pi.Q)) ∨ 3Q)

⇛ {t ∈ TrSF.A, i.e., (3.5)}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ (∃A
pi

23(gp.pi ∧ wpp.pi.Q) ∧ 23(pcp 6= i)) ∨ 3Q)

⇛ {instantiatepi}{pi is eventually executed}

(∃v:dom(t) v ≥ u ∧ (t, v) ⊢ 23Q ∨ 3Q)

⇛ {definition of3}{23a ⇒ 3a}

(t, u) ⊢ 33Q

⇛ {33a ≡ 3a}{logic}

(t, u) ⊢ P ⇒ 3Q

Because we have chosen an arbitraryt ∈ TrSF.A andu ∈ dom(t), TrSF.A |= P Q. 2
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The theorem states thatP ∧ ¬Q needs to imply that there is a enabled statement

that establishesQ and that control is currently at that statement. Thus, execution of a

processq different fromp may disablepi as long as it enables some other statement that

can establishQ. Condition (4.47) required by Theorem 4.45 (immediate progress under

strong fairness) is weaker than condition (4.44) required by Theorem 4.42 (immediate

progress under weak fairness), however, by weakening this condition, Theorem 4.45

only holds for strongly fair traces.

Theorem 4.48(Immediate progress under minimal progress). SupposeA is a program;

I is an invariant ofA; and P, Q are predicates. Then,Tr.A |= P Q holds if

[ I ∧ P ∧ ¬Q ⇒ (∀A
pi

wpp.pi.Q) ∧ (∃A
pi

gp.pi) ] (4.49)

Proof. The proof follows becauseP ∧ ¬Q implies that execution of each enabled state-

ment establishesQ and furthermore, some statement is enabled. 2

Thus, P  Q holds for all traces of a program ifP ∧ ¬Q implies all enabled

processes establishQ and one of these processes is enabled. Condition (4.49) is stronger

than (4.44), but Theorem 4.48 does not impose any fairness requirements.

We often make use of the following lemma which enables us to strengthen our ini-

tial assumptions in a leads-to proof and allows us to remove unreachable states from

consideration.

Lemma 4.50(Invariant progress). SupposeA is a program; I is an invariant ofA; and

P, Q are predicates.Tr.A |= P Q holds iff Tr.A |= P ∧ I  Q.

Proof. Given any traces∈ Tr.A, we have:

s⊢ 2I ∧ (P ∧ I  Q)

≡ {definition of }{distribute2}

s⊢ 2(I ∧ (P ∧ I ⇒ 3Q))

≡ {logic}

s⊢ 2(I ∧ (P ⇒ 3Q))

≡ {distribute2}{definition of }

s⊢ 2I ∧ (P Q) 2
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4.3.3 Discussion and related work

Owicki and Lamport [OL82] present a proof system where the LTL operators2 and3

have been incorporated into the Owicki and Gries formalism.A drawback of their sys-

tem is that it does not contain a blocking primitive, and hence blocking must be simulated

using a looping construct. Their logic is missing the ‘unless’ operator, and keywords,

‘at’, ‘after’ and ‘in’ are used to describe the control stateof the program which means

the proofs are not calculational, hence are less suitable inthe context of program deriva-

tion [FvG99]. Lamport [Lam02] describes a framework that encodes LTL, however, the

framework is mostly suitable for describing specifications, not programs.

A UNITY program [CM88] consists of a finite number terminating statements, all

of whose guards are evaluated atomically. Weak fairness is inherently assumed and may

be expressed as “each statement is executed infinitely often” [Mis01]. Because each

statement is terminating, one may also assumewp = wlp [JKR89] which allowsun to

be defined using thewlp predicate transformer. In [DG06], the safety logic of Owicki

and Gries [OG76] is integrated with the progress logic from UNITY [CM88], i.e., the

progress logic from UNITY is incorporated into a fundamentally different model. In this

thesis, atomic statements may become disabled or may not terminate which allows one

to describe programs that are not expressible in UNITY.

Although is a liveness property, the presentation in [CM88, DG06] does not refer

to LTL [MP92]. Jutla et al [JKR89] describe the weakest leads-to predicate transformer

which is related to the progress logic of UNITY and CTL. Gerthand Pnueli [GP89]

show how UNITY could have been obtained as a specialisation of transition logic and

linear-time LTL [MP92], thus providing a theoretical backing for UNITY.

Our presentation separates theorems of LTL from those of theprogress logic more

clearly and requirements such as weak fairness that are implicit in [CM88, DG06] have

been made explicit. The usefulness of this is demonstrated by our ability to devise new

theorems (Theorems 4.45 and 4.48) that describe the conditions necessary forP  Q

to hold under strong fairness and minimal progress assumptions. This work is closely

related to the theory of Jutla and Rao [JR97] where conditions that guarantee ‘ensures’

under differing fairness conditions are presented using predicate transformers and CTL.
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Theorems 4.42 and 4.48 are almost equivalent to those of Jutla and Rao [JR97] but the

conditions for Theorem 4.45 are simpler.

4.4 Proving individual progress

We now describe techniques for proving individual progresswithout resorting to LTL.

We present the most general lemmas possible, then show how these lemmas may be

used to prove individual progress. The progress logic from Section 4.3 allows proofs

via algebraic manipulation, so we aim for a calculational proof method. Furthermore,

we aim to use progress proofs as a tool for program derivation, and hence we evaluate

how the derivation techniques of Feijen and van Gasteren [FvG99] affect progress, and

we develop a number of heuristics to aid derivations. The challenge is to be formal and

precise, while keeping the complexity of the proof obligations low.

This section is organised as follows. We formalise the ground rule for progress

[FvG99] in Section 4.4.1; consider stable guard under weak fairness in Section 4.4.2;

non-stable guards under minimal progress in Section 4.4.3;and progress at the base un-

der minimal progress in Section 4.4.4. We present heuristics that summarise our theory

in Section 4.4.5 and techniques for program derivation in Section 4.4.6.

4.4.1 Ground rule for progress

By Definition 3.18 (individual progress) and Lemma 2.25 (contradiction), a programA

satisfies individual progress iff for eachp ∈ A.Proc andi ∈ PCp, the following holds:

Tr.A |= pcp = i  pcp 6= i. (4.51)

Under weak fairness, ifpi terminates and does not block, then (4.51) is trivially true.

However, if pi is a blocking statement, we take the following rule from [FvG99] into

consideration.

Rule 4.52(Ground rule for progress). For each guarded statementif B → Sfi, in a pro-

cess, it should hold that the rest of the system has the potential of ultimately establishing

B.
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Rule 4.52 motivates the use of Lemma 2.29 (induction) which allows execution of the

whole program to systematically be taken into consideration. We usually consider a well-

founded relation whose value is reduced by all processes other thanp. For example, if

there is only one other process, sayq, we might consider relation(≺, PCτ
q). Then,

application of Lemma 2.29 (induction) to prove (4.51) results in the following proof

obligation:

(∀j:PCτ

q
Tr.A |= pcp = i ∧ pcq = j  pcp 6= i ∨ (pcp = i ∧ pcq ≺ j)).

which by is equivalent to

(∀j:PCτ

q
Tr.A |= pcp = i ∧ pcq = j  pcp 6= i ∨ pcq ≺ j). (4.53)

Requirement (4.53) may be proved via case analysis onj ∈ PCτ
q. For such proofs, we

take the following heuristic into account.

Heuristic 4.54. Progress is better addressed from the base of the well-founded relation

back to the maximal element.

Notice that application of Lemma 2.29 (induction) allows the value ofM to increase

before it decreases to below its original value. In our proofs, we find it easier to ensure

that the value ofM is continually decreased whenever progress has not been made, i.e.,

we use a stronger requirement that execution of each statement either reduces the value

of the well-founded relation, or establishes the desired result. For such proofs, we may

use Theorem 4.48 (immediate progress under minimal fairness).

4.4.2 Stable guards under weak-fairness

Under weak fairness individual progress holds if

TrWF.A |= pcp = i  pcp 6= i (4.55)

which is guaranteed ifgp.pi is stable in the other processes and eventually becomes

enabled. We may apply this principle to more general formulae of the formP  Q

by ensuring that a statement, saypi, that is guaranteed to achieveQ eventually becomes
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enabled, and furthermore,gp.pi is stable in the other processes. Recall that we usestp.P

to denote that predicateP is stable in processp.

Lemma 4.56(Stable termination). SupposeA is a program; predicate I is an invariant

of A; P and Q are predicates; p∈ A.Proc is a process; and i∈ PCp is a label. If for

some predicate R,

TrWF.A |= P Q ∨ R (4.57)

[ I ∧ R ⇒ gp.pi ∧ wpp.pi.Q ] (4.58)

(∀q:A.Proc p 6= q ⇒ stq.R) (4.59)

thenTrWF.A |= P Q.

Proof. By (4.58) and Lemma 4.40,R unp Q holds, while by (4.59) and Lemma 4.38

(stable (2)),R unq Q holds for all processesq 6= p. HenceR unA Q holds. Using

R unA Q and (4.58), we apply Theorem 4.42 (immediate progress underweak fairness),

which gives usTrWF.A |= R Q. The result then follows using (4.57) together with

Lemma 2.27 (cancellation). 2

Without the weak fairness assumption, establishing the stable conditionR is not suffi-

cient for showingP Q because there is no guarantee that processp will be executed

even ifgp.pi is stable in processes other thanp.

If we use Lemma 4.56 (stable termination) to prove (4.55), after applying Lem-

ma 2.29 on (4.57) and some simplification, we obtain the following progress require-

ment:

(∀m:W TrWF.A |= pcp = i ∧ M = m pcp 6= i ∨ R∨ M ≺ m) (4.60)

and condition (4.58) is equivalent to[ I ∧ R ⇒ gp.pi ∧ tp.pi ]. If m is a base of(≺, W),

it is not possible forM ≺ m to be established, and furthermore, processq 6= p cannot

establishpcp 6= i, and henceR must be established. Thus, we obtain the following

heuristic.

Heuristic 4.61. In a program that satisfies (4.60), the statement(s) in process q6= p that

correspond to the base of(≺, W) should establish R.
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Under weak fairness, for a program with only two processes, individual progress for

a statement with stable guard may be proved using the following corollary.

Corollary 4.62 (Stable induction). SupposeA is a program; I is an invariant ofA;

A.Proc = {p, q}; and (≺, PCτ
q) is a well-founded relation. Then, for any i∈ PCp such

that stq.(gp.pi) holds,TrWF.A |= pcp = i  pcp 6= i holds if for some SS⊆ PCτ
q:

(∀j:PCτ

q−SS[ I ∧ pcp = i ∧ pcq = j ⇒

tp.pi ∧ wpq.qj .(pcq ≺ j ∨ gp.pi) ∧ (gp.pi ∨ gq.qj) ])

(4.63)

(∀j:SSTrWF.A |= pcq = j  pcq ≺ j) (4.64)

Thus, for some set of labelsSS, statements corresponding to labels outside ofSSmust

satisfy (4.63), and statements corresponding to labels inSSmust satisfy (4.64). Condi-

tion (4.64) allows one to prove individual progress using assumptions on incompletely

specified parts of the program. For example, in a mutual exclusion program, one might

assume that the critical section terminates, and that the final label of the critical section

is smaller (with respect to(≺, PCτ
q)) than all labels within the critical section. Such an

assumption can be stated using (4.64).

4.4.3 Non-stable guards

When proving a property of the form (4.53) processp is guaranteed to achievepcp 6= i

if pi terminates, while processq is guaranteed to achievepcq ≺ j if j is not a base of

(≺, PCτ
q). Using this observation, we present the following lemma that allows us to

prove the general condition for Lemma 2.29 (induction).

Lemma 4.65(Deadlock preventing progress). SupposeA is a program; I is an invariant

of A; P and Q are predicates;(≺, W) is a well-founded relation; and M is a total

function from states ofA to W. For a fresh variable m, a process p∈ A.Proc and label

i ∈ PCp, if:

[ I ∧ P ∧ M = m∧ ¬Q ⇒

wpp.pi.Q ∧ (4.66)
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(∀A
qj

qj 6= pi ⇒ wpq.qj.(Q ∨ (P ∧ M ≺ m))) ∧ (4.67)

(∃A
qj

gq.qj) ] (4.68)

then,

Tr.A |= P ∧ M = m Q∨ (P ∧ M ≺ m).

Proof.

Tr.A |= P∧ M = m Q∨ (P ∧ M ≺ m)

⇚ {Theorem 4.48 (immediate progress under minimal fairness)

with P := P ∧ M = m andQ := Q ∨ (P ∧ M ≺ m)}

[ I ∧ P∧ M = m∧ ¬Q ⇒ (∃A
qj

gq.qj) ∧ (∀A
qj

wpq.qj .(Q ∨ (P ∧ M ≺ m))) ]

⇚ {case analysis}{(4.68)}

[ I ∧ P∧ M = m∧ ¬Q ⇒ wpp.pi .Q ∧ (∀A
qj

qj 6= pi ⇒ wpq.qj .(Q ∨ (P ∧ M ≺ m))) ]

⇚ {(4.66)}{(4.67)}

true 2

By (4.66), if I ∧ P ∧ M = mholds thenpi is guaranteed to terminate and establishQ

whenever it is enabled, and by (4.67) each statementqj different frompi that is enabled

is guaranteed to terminate and establishP ∧ M ≺ m. By (4.68), if I ∧ P ∧ M = m

holds, then at least one of the processes in the program is enabled.

Using Lemma 4.65 (deadlock preventing progress) to prove (4.53) results in the fol-

lowing requirement

[ I ∧ pcp = i ∧ M = m⇒

tp.pi ∧ (∀A
qj

q 6= p ⇒ wpq.qj.(M ≺ m)) ∧ (∃A
qj

gq.qj) ] (4.69)

Condition (4.69) implies (4.66) because[ wpp.pi.(pcp 6= i) ] holds and (4.69) implies

(4.67) becausepcp = i ∧ i 6= j ⇒ ¬gp.pj holds for any processp and labelsi, j.

For a program with only two processes, one may use the following corollary to prove

individual progress. Because the guard ofpi is not stable in processq, each statement in

q must eventually reduce the value of the well-founded relation.
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Corollary 4.70 (Binary induction). SupposeA is a program; I is an invariant ofA;

A.Proc = {p, q}; (≺, PCτ
q) is a well-founded relation; SS⊆ PCq; and Q is a predicate.

If for some i∈ PCp if there exists TT⊆ SS such that,

(∀j:SS−TT [ I ∧ pcp = i ∧ pcq = j ⇒

wp.pi .Q ∧ wpq.qj .(pcq ≺ j ∨ Q) ∧ (gp.pi ∨ gq.qj) ])

(4.71)

(∀j:TT Tr.A |= pcq = j  pcq ≺ j) (4.72)

then(∀j:SSTr.A |= pcp = i ∧ pcq = j  Q ∨ pcq ≺ j) holds.

Note that if j is a base of(≺, PCτ
q) andQ = (pcp 6= i) we havewpq.qj .(pcq ≺ j ∨

pcp 6= i) ≡ wpq.qj.(pcp 6= i) ≡ (gp.qj ⇒ pcp 6= i). Thus, (4.71) simplifies to

[ I ∧ pcp = i ∧ pcq = j ⇒ tp.pi ∧ gp.pi ∧ ¬gq.qj ]. (4.73)

Inductive proofs that use(≺, PCq) are potentially problematic if processq contains a

loop, which may increase the value ofpcq. For the two process case under weak-fairness,

we may use the following lemma.

Lemma 4.74. SupposeA is a program; I is an invariant ofA; A.Proc = {p, q};

(≺, PCτ
q) is a well-founded relation; and Q is a predicate. If there exists a set RR⊆ PCτ

q

such that

TrWF.A |= 2(¬Q ∧ pcq ∈ RR⇒ gp.pi) (4.75)

(∀k:PCτ

q−RR,j:RR k ≺ j) (4.76)

(∀j:PCτ

q−RR TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcq ≺ j) (4.77)

then(∀j:PCτ

q
TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcp ≺ j holds.

Proof. By logic, we have:

TrWF.A |= 32(¬Q ∧ pcq ∈ RR) ∨ ¬32(¬Q ∧ pcq ∈ RR)

≡ {logic}

TrWF.A |= 32(¬Q ∧ pcq ∈ RR) ∨ 23(Q ∨ pcq 6∈ RR)
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⇛ {(4.75)}

TrWF.A |= 32gp.pi ∨ 23(Q ∨ pcq 6∈ RR)

≡ {by definitionTrWF.A |= ¬32gp.pi}

TrWF.A |= 23(Q ∨ pcq 6∈ RR)

≡ {by definition}

TrWF.A |= true Q ∨ pcq 6∈ RR

The proof now follows.

(∀j:PCτ

q
TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcq ≺ j)

⇚ {(4.77)}{RR⊆ PCτ
q}

(∀j:RR TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcq ≺ j)

⇚ {(4.76)}

(∀j:RR TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcq 6∈ RR)

⇚ {calculation above and Lemma 2.24 (anti-monotonicity)}

true 2

4.4.4 Base progress

In a proof of condition (4.53) for a labelj that is a base of(≺, PCτ
q), we have the follow-

ing calculation.

Tr.A |= pcp = i ∧ pcq = j  pcp 6= i ∨ pcq ≺ j

≡ {j is a base of(≺, PCτ
q)}

Tr.A |= pcp = i ∧ pcq = j  pcp 6= i

We have developed the following lemma to prove progress at the base of(≺, PCτ
q) that

generalises this observation.

Lemma 4.78(Base progress). SupposeA is a program; I is an invariant ofA; P and Q

are predicates;(≺, W) is a well-founded relation; M is a total function from statesof A

to W; and b is a base of(≺, W). For process p∈ A.Proc and label i∈ PCp if:

[ I ∧ P ∧ M = b ⇒ gp.pi ∧ wpp.pi .Q ∧ (∀A
qj

q 6= p ⇒ ¬gq.qj) ] (4.79)
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then,

Tr.A |= P ∧ M = b  Q.

Proof.

Tr.A |= P ∧ M = b Q

⇚ {Theorem 4.48 (immediate progress under minimal fairness)

with P := P ∧ M = b}

[ I ∧ P ∧ M = b ⇒ (∃A
qj

gq.qj) ∧ (∀A
qj

wpq.qj .Q) ]

⇚ {logic}{case analysis}

[ I ∧ P ∧ M = b ⇒ gp.pi ∧ wpp.pi.Q ∧ (∀A
qj

p 6= q ⇒ wpq.qj .Q) ]

⇚ {logic}{false⇒ wpq.qj .Q}

[ I ∧ P ∧ M = b ⇒ gp.pi ∧ wpp.pi.Q ∧ (∀A
qj

p 6= q ⇒ wpq.qj .false) ]

⇚ {wpq.qj .false≡ ¬gq.qj}{(4.79)}

true 2

Note that ifgp.pi then for anyj 6= i, ¬gp.pj. According to Lemma 4.78 (base progress),

P ∧ M = b  Q if I ∧ P ∧ M = b implies thatpi terminates and establishesQ,

and furthermore,pi is enabled while all other processes are disabled. This suggests the

following heuristic for choosing bases of a well-founded relation.

Heuristic 4.80. A good base for a well-founded relation corresponds to a blocking state-

ment. If all blocking statements are unsuitable, the statement immediately preceding the

blocking statement may be used.

4.4.5 Progress under weak fairness

In this section we present two lemmas for proving individualprogress under weak fair-

ness in two-process programs, which summarises the theory from Sections 4.4.2, 4.4.3

and 4.4.4. SupposeA is a program such thatA.Proc = {p, q}. We show how a property

of the formTrWF.A |= pcp = i  Q may be proved for a predicateQ, whereq may be

a possibly non-terminating loop. Note that by substitutingpcp 6= i for Q, we obtain the

proof obligations for showing individual progress. Ifq contains loops, then the ‘data’
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state must also be considered, in which case the well-founded relation as well as condi-

tions (4.76) and (4.72) must be generalised (e.g., in a manner similar to Lemma 4.65).

The lemma below describes the conditions necessary whengp.pi is not necessarily stable

in processq.

Lemma 4.81(Unstable guard). SupposeA is a two-process program with invariant I

such thatA.Proc = {p, q}, and there exists a well-founded relation(≺, PCτ
q) and sets

RR⊆ PCτ
q, TT ⊆ PCτ

q − RR such that (4.76) and (4.72) hold. For a label i∈ PCτ
p and

predicate Q,TrWF.A |= pcp = i  Q holds if (4.75) holds and

(∀j:(PCτ

q−RR)−TT [ I ∧ pcp = i ∧ pcq = j ⇒

wpp.pi.Q ∧ wpq.qj.(pcq ≺ j ∨ Q) ∧ (gp.pi ∨ gq.qj) ]).

(4.82)

Proof.

TrWF.A |= pcp = i  Q

⇚ {Lemma 2.29 (induction)}

(∀j:PCτ

q
TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcq ≺ j)

⇚ {Lemma 4.74, using assumptions (4.75) and (4.76)}

(∀j:PCτ

q−RR TrWF.A |= pcp = i ∧ pcq = j  Q ∨ pcq ≺ j)

⇚ {Corollary 4.70 (binary induction), using (4.72)}

(∀j:(PCτ

q−RR)−TT [ I ∧ pcp = i ∧ pcq = j ⇒

wpp.pi .Q ∧ wpq.qj .(pcq ≺ j ∨ Q) ∧ (gp.pi ∨ gq.qj) ]).

⇚ {(4.82)}

true 2

If a predicate that implies thatgp.pi is stable in processq, we may use the second

lemma below.

Lemma 4.83(Stable guard). SupposeA is a two-process program with invariant I such

thatA.Proc = {p, q}, and there exists a well-founded relation(≺, PCτ
q) and sets RR⊆

PCτ
q, TT ⊆ PCτ

q − RR such that (4.76) and (4.72) hold. For a label i∈ PCτ
p, and

predicate Q,TrWF.A |= pcp = i  Q holds if there exists a predicate R such that

[ I ∧ R⇒ gp.pi ], TrWF.A |= stq.R, and

TrWF.A |= 2(¬Q ∧ ¬R∧ pcq ∈ RR⇒ gp.pi) (4.84)
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(∀j:(PCτ

q−RR)−TT [ I ∧ pcp = i ∧ pcq = j ⇒

wpp.pi.Q ∧ wpq.qj.(pcq ≺ j ∨ Q ∨ R) ∧ (gp.pi ∨ gq.qj) ]).

(4.85)

Proof.

TrWF.A |= pcp = i  Q

⇚ {Lemma 4.56 (stable termination)

use[I ∧ R⇒ gp.pi], (4.85), andTrWF.A |= stq.R}

TrWF.A |= pcp = i  Q ∨ R

⇚ {Lemma 4.74}

true 2

4.4.6 Program derivation

Proving that a progress property holds is difficult [Lam02].Even more difficult is main-

taining a progress property under program modification. We have shown how progress

properties may be proved by introducing a well-founded relation. This allows one to

introduce invariants that ensure each statement either reduces the value of the relation,

or establishes the required condition. That is, by using a well-founded relation, a proof

of progress can essentially be reduced to proving invariants. The sorts of invariants that

need to hold depend on stability of the guards under consideration.

The progress property we consider is individual progress which guarantees that prog-

ress is made past each reachable statement. Under weak fairness, individual progress

is maintained upon introducing a non-blocking terminatingstatement. However, upon

introducing a blocking statement, we immediately introduce a corresponding proof obli-

gation to guarantee individual progress past the statement. Depending on whether or not

we are able to assert stability of the guard of the blocking statement, progress is proved

in one of the following two ways:

• For a guard that is stable under the other processes, the proof obligation is weak-

ened using Lemma 4.56 (stable termination). Then, Lemma 2.29 (induction) is
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applied using a well-founded relation corresponding to thereverse execution or-

der of all other components. Following Heuristic 4.61, suitable bases of the well-

founded relation are labels corresponding to statements that establish the stable

condition.

• For a guard that is not necessarily stable, progress is proved by directly applying

Lemma 2.29 (induction). Following Heuristic 4.80, suitable bases of the well-

founded relation are statements that can block.

Once a suitable base is found, case analysis on the program counters of the other compo-

nents is performed. The non-blocking statements are generally guaranteed to terminate

at a smaller control point, and hence may immediately be discharged. For the block-

ing statements, we use Theorem 4.48 (immediate progress under minimal fairness) and

Lemma 4.65 (deadlock preventing progress), which, in turn,usually introduce some new

requirements on the program. The derivation then continuesby introducing statements

and annotation so that the new requirements are satisfied.

4.5 Conclusion

Hoare showed how a sequential program could be verified without resorting to the op-

erational understanding of the program [Hoa69]. Then, in the context of concurrent

programs, Owicki and Gries showed how safety properties could be verified by adding

an interference freedomcondition to Hoare’s logic, but leaving the underlying logic un-

changed [OG76]. Although this modification was small, the Owicki and Gries theory

improved on the previously existing global invariant method of Ashcroft [Ash75]. In

this chapter, we have described a logic of safety that reformulates the theory of Ow-

icki and Gries in the programming model from Chapter 2 where program counters are

explicit. Furthermore, we incorporate a logic of progress within the theory.

Our extension to the theory of Owicki and Gries includes a logic of progress. This

thesis uses the logic to describe a method of program derivation in the style of Feijen

and van Gasteren [FvG99]. In a program verification, we do nothave the freedom to
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change a program when a proof does not work out. We are left with the dilemma of not

knowing whether the program or the proof is at fault. In this respect, deriving a program

that satisfies a specification is certainly superior. Feijenand van Gasteren have already

shown how commonly occurring design patterns can be identified in both programs and

their proofs, and how these patterns can be used to shorten proofs. We believe that

patterns such as these will emerge with the extended theory as well. It is a case of

realising when they do and noting them accordingly.

We have presented a number of techniques that are suited for the derivation of con-

current programs, paying equal attention to safety and progress. The style of deriva-

tion we are aiming for is that of Dijkstra [Dij76] and Feijen and van Gasteren [FvG99]

where program construction involves repeated modificationof a program as guided by

the queried properties. Such techniques benefit from a calculational approach to proofs.

We have also investigated the sorts of modifications that preserve proofs of progress in

orders to avoid reproving conditions that have already beenestablished. We note that

many of our lemmas are applicable to systems that only provide minimal fairness guar-

antees.

Derivations of concurrent programs using UNITY are presented in [CM88, Kna90a,

Kna90b]. With their method, one performs refinements on the original specification until

a level of detail is reached where the UNITY program is ‘obvious’. Hence derivations

stay within the realms of specifications until the final step,in which the specification

is transformed to a UNITY program. However, with their method each specification

consists of a list of invariants and leads-to assertions making it it difficult to judge the

overall structure of the program. Furthermore, it is difficult to decide when there is

enough detail in the specification to translate it to a program. UNITY also inherently

assumes weak-fairness is available and unlike us, are unable to deal with other sorts of

fairness assumptions.



5
Example Progress Verifications

We present example uses of the theory developed in Chapters 2, 3 and 4 by verifying the

progress properties of a number examples from the literature. As a blocking example,

we verify the initialisation protocol [Mis91]. In order to demonstrate the logic under

differing fairness assumptions, we verify the protocol assuming both weak fairness and

minimal progress. We also describe an attempted proof of a program that satisfies safety,

but does not satisfy progress, which demonstrates that the theory is capable of proving

that a progress property does not hold. The proof in Section 5.1.2 can be simplified by

using the lemmas in Section 4.4, however, we have chosen to demonstrate some other

techniques for proving progress. We demonstrate example uses of the techniques from

Section 4.4 in Sections 5.1.3 and 5.3. We perform a more comprehensive case study by

verifying then-process bakery algorithm [Lam74].

The progress properties of a non-blocking program are slightly different to those

105
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of blocking programs (see Chapter 3). We demonstrate how such properties may be

proved for a number of simple examples, which serve as counter-examples, completing

the proofs of Theorems 3.42 and 3.43.

Contributions. The progress proofs of the initialisation protocol in Sections 5.1 and

5.2, and the bakery algorithm in Section 5.3 are novel. The non-blocking programs in

Section 5.4 appear in [Don06a], but the proofs in this thesisuse the improved theory from

Chapters 3 and 4, as well as techniques for proving lock-freedom from [CD07, CD09].

5.1 The initialisation protocol

Our first example is the initialisation protocol [Mis91] presented in Fig. 5.1 which is

used to synchronise initialisation statementsX.init andY.init distributed over processes,

X andY. The protocol ensures thatY has completed execution ofY.init when process

X terminates, and vice versa, without assigning to variableswithin or beforeX.init and

Y.init. Furthermore, both processes are guaranteed to terminate.

We prove the safety property of the protocol in Section 5.1.1, the progress property

under weak fairness in Section 5.1.2, and progress propertyunder minimal progress in

Section 5.1.3. Because the processesX andY are symmetric, we focus our discussion

on processX only.

The details ofX.init are not given, however, we assume thatX.init terminates and

does not block, which may be formalised as follows:

IAX =̂ pcX ∈ IPCX  pcX 6∈ IPCX

where

IPCX =̂ labels(0: X.init)

is the set of all labels withinX.init, including0 but not1. The subscriptX in IAX denotes

that IAX is a property of processX. BecauseX andY are symmetric, for each property
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Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: y := false;

2: x := true ;

3: 〈if y → skip fi〉 ;

4: x := true

τ :

ProcessY

0: Y.init ;

1: x := false;

2: y := true ;

3: 〈if x → skip fi〉 ;

4: y := true

τ :

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

FIGURE 5.1: Initialisation protocol

PX, we assume the existence of a symmetric propertyPY. We follow the convention of

placing program properties under the program code.

The safety requirement of the initialisation protocol is that when processX termi-

nates, processY has already completed execution ofY.init, and vice versa, which is

formalised by the following property:

2((pcX = τ ⇒ pcY 6∈ IPCY) ∧ (pcY = τ ⇒ pcX 6∈ IPCX)). (5.1)

The progress requirement for the program states that both processes eventually termi-

nate. That is, the program counters of both processesX and Y should eventually be

equal toτ . We formalise the progress requirement in terms of leads-toas follows:

true pcX = τ ∧ pcY = τ. (5.2)

5.1.1 Proof of safety

Safety is proved by annotating the program as in Fig. 5.2 where we use sets

IPC1X =̂ IPCX ∪ {1}

IPC1Y =̂ IPCY ∪ {1}.

Each assertion in the annotation can be trivially shown to becorrect by proving local and

global correctness. In a similar manner to the example in Section 4.2.3, the annotation

is used to prove that (5.1) is invariant.
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Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: y := false;

2: {y ⇒ pcY 6∈ IPC1Y}

x := true ;

3: {y ⇒ pcY 6∈ IPC1Y}

〈if y → skip fi〉 ;

4: {pcY 6∈ IPC1Y}

x := true

τ : {pcY 6∈ IPC1Y}

ProcessY

0: Y.init ;

1: x := false;

2: {x ⇒ pcX 6∈ IPC1X}

y := true ;

3: {x ⇒ pcX 6∈ IPC1X}

〈if x → skip fi〉 ;

4: {pcX 6∈ IPC1X}

y := true

τ : {pcX 6∈ IPC1X}

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

FIGURE 5.2: Annotated initialisation protocol

5.1.2 Proof of progress (assuming weak-fairness)

The proof below can be simplified by using the lemmas in Section 4.4, however, we have

chosen to demonstrate some other techniques for proving progress. The proof uses the

following properties:

2(pcY = τ ⇒ y) (5.3)

2(pcX = 3 ∧ ¬y ∧ pcY = 3 ⇒ x) (5.4)

which state thatX3 is enabled whenY has terminated, andY3 is enabled ifX3 is disabled.

These can be proved as in Section 4.2.3.

BecausegX.Xτ ≡ false, we may prove each conjunct of (5.2) separately, i.e., prove

that each of the following holds:

TrWF |= true pcX = τ (5.5)

TrWF |= true pcY = τ. (5.6)

Exploiting the symmetry between the two processes, we may take the proof of (5.5) as

the proof of (5.6), hence we focus on (5.5). Using Lemma 4.32 (contradiction), (5.5)
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holds if

TrWF |= pcX 6= τ  pcX = τ (5.7)

which, by definition ofPCX, is equivalent to

(∀i:PCX TrWF |= pcX = i  pcX = τ). (5.8)

The proof of (5.8) follows by case analysis on the possible values ofi noting that due to

weak fairness, each of the following hold:

TrWF |= pcX = 1 pcX = 2 (5.9)

TrWF |= pcX = 2 pcX = 3 (5.10)

TrWF |= pcX = 4 pcX = τ. (5.11)

• Casei = 4. This case trivially follows from (5.11).

• Casei = 3. By Theorem 2.22 (transitivity) and (5.11), the proof of this case

follows if pcX = 3 pcX = 4. We have the following calculation

pcX = 3 pcX = 4

≡ {logic}

pcX = 3 ∧ (y ∨ ¬y) pcX = 4

⇚ {Theorem 2.23 (disjunction)}

(pcX = 3 ∧ y pcX = 4) ∧ (pcX = 3 ∧ ¬y pcX = 4)

⇚ {Theorem 2.22 (transitivity)}

(pcX = 3 ∧ y pcX = 4) ∧ (pcX = 3 ∧ ¬y pcX = 3 ∧ y)

Thus, we have the following proof obligations:

pcX = 3 ∧ y  pcX = 4 (5.12)

pcX = 3 ∧ ¬y  pcX = 3 ∧ y (5.13)

We prove (5.12) using Theorem 4.42 (immediate progress under weak fairness).

The only statement of concern in processX is X3, which establishespcX = 4. The

only statements in processY that modify the variables in (5.12) areY2 andY4,
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however, both these statements preservepcX = 3 ∧ y. Thus both (4.43) and (4.44)

in Theorem 4.42 (immediate progress under weak fairness) are satisfied.

Proof obligation (5.13), is proved via application of Lemma4.32 (program count-

er) and Theorem 2.23 (disjunction) which results in the following requirement:

(∀j:PCY pcX = 3 ∧ ¬y ∧ pcY = j  pcX = 3 ∧ y). (5.14)

We prove (5.14) via case analysis on the values ofj starting from the end of com-

putation, i.e.,j = τ .

– case j= τ . By (5.3), the antecedent of (5.14) isfalse, and the proof is trivial.

– case j= 4. The proof follows via an application of Theorem 4.42 (immediate

progress under weak fairness).

– case j= 3. Using (5.4) the proof follows if we use Theorem 4.42 (immediate

progress under weak fairness) to prove thatpcX = 3 ∧ ¬y ∧ pcY = 3  

pcX = 3 ∧ ¬y ∧ pcY = 4. We then use the result forj = 4 and Theorem 2.22

(transitivity) to conclude the proof ofj = 3.

– case j∈ labels(Y.init)∪{1, 2}. These cases follow fromIAY (the symmetric

equivalent ofIAX), (5.9), (5.10), Theorem 2.22 (transitivity) and the results

for casej = 3.

• Casei = 2. This case holds by Theorem 2.22 (transitivity), (5.10) andthe proof

of casei = 3.

• Casei = 1. This case holds by Theorem 2.22 (transitivity), (5.9) and the proof of

casei = 2.

• Casei ∈ IPCX. These cases follow byIAX, Theorem 2.22 and the proofs of cases

i ∈ {1, 2, 3, 4} becausei 6∈ IPCX ≡ i ∈ {1, 2, 3, 4} holds.

The case analysis is now complete, which concludes our proofof progress.
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5.1.3 Proof of progress (assuming minimal progress)

We now prove the progress requirement (5.2) assuming only minimal progress. This

time we use Lemma 2.29 (induction). We note that although thefairness guarantees are

weaker than in the proof in Section 5.1.2, the proof itself ismuch simpler.

The proof proceeds as in Section 5.1.2, which leaves us with the proofs of (5.5) and

(5.6). Again, exploiting the symmetry between the processes, we may take the proof of

(5.5) as the proof of (5.6). We apply Lemma 2.29 (induction) to (5.5) where the well-

founded relation is on(≺, PCτ
Y). Because we expect the processes to terminate, the base

of (≺, PCτ
Y) should be labelτ , i.e., the relation isτ ≺ 4 ≺ 3 ≺ 2 ≺ 1 ≺ i, where

i ∈ IPCY. We have the following calculation.

true pcX = τ

≡ {Lemma 4.32 (program counters)}

pcX ∈ PCX  pcX = τ

⇚ {Theorem 2.22 (transitivity)}{IAX: pcX ∈ IPCX  pcX 6∈ IPCX}

pcX ∈ PCX − IPCX  pcX = τ

≡ {definitions ofIPCX andPCX}{logic}

(∀i:{1,2,3,4} pcX = i  pcX = τ)

⇚ {structure ofX, X does not contain loops}

(∀i:{1,2,3,4} pcX = i  pcX 6= i)

⇚ {Lemma 2.29 (induction)}

(∀i:{1,2,3,4},j:PCτ

Y
pcX = i ∧ pcY = j  (pcX = i ∧ pcY ≺ j) ∨ pcX 6= i)

⇚ {Theorem 2.22 (transitivity) usingIAY}

(∀i:{1,2,3,4},j:{1,2,3,4,τ} pcX = i ∧ pcY = j  (pcX = i ∧ pcY ≺ j) ∨ pcX 6= i)

We may prove the last step using Theorem 4.48 (immediate progress under minimal

fairness). We define

Q =̂ (pcX = i ∧ pcY ≺ j) ∨ pcX 6= i.

For eachi ∈ {1, 2, 3, 4}, [ pcX = i ⇒ wpX.Xi.Q ] holds and eachj ∈ {1, 2, 3, 4, τ},

[ pcY = j ⇒ wpY.Yj .Q ] holds. Furthermore, for each pair ofi ∈ {1, 2, 3, 4} and j ∈
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{1, 2, 3, 4, τ}, pcX = i ∧ pcY = j ⇒ gX.Xi ∨ gY.Yj holds, due to (5.3) and (5.4). This

completes the case analysis, and hence the proof of progress.

5.2 Failing progress

Our second example considers the program in Fig. 5.3, which is the same as the program

in Fig. 5.2 but the statements labelled4 have been removed. The safety requirement of

the program is identical to the first example and the annotation in Fig. 5.3 is used to show

that (5.1) is invariant.

Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: y := false;

2: x := true ;

3: {y ⇒ pcY 6∈ IPC1Y}

〈if y → skip fi〉

τ : {pcY 6∈ IPC1Y}

ProcessY

0: Y.init ;

1: x := false;

2: y := true ;

3: {x ⇒ pcX 6∈ IPC1X}

〈if x → skip fi〉

τ : {pcX 6∈ IPC1X}

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

FIGURE 5.3: Annotated initialisation protocol (version 2)

5.2.1 Attempted proof of progress

In order to prove progress, i.e., (5.2), we employ the same initial strategy in Section 5.1.2,

which results in the following proof obligation:

(∀i:PCX pcX = i  pcX = τ). (5.15)

The proof for casei = τ follows from an application of Lemma 2.26 (implication). For

casei = 3 we apply our heuristic for proving progress at a guarded statement which

results in the following proof obligations:

pcX = 3 ∧ y  pcX = τ (5.16)
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pcX = 3 ∧ ¬y  pcX = 3 ∧ y (5.17)

Proof obligation (5.16) is easily proved via an applicationof Theorem 4.42 (immediate

progress under weak fairness). The proof of (5.17) however requires is problematic for

Yτ , i.e., requires correctness of

2(pcX = 3 ∧ pcY = τ ⇒ y).

Unfortunately,2(pcX = 3 ∧ pcY = τ ⇒ y) does not hold, which shows the program in

Fig. 5.3 can deadlock.

5.2.2 Discussion

In a design setting Feijen and van Gasteren [FvG99] present anumber of techniques for

avoiding deadlock. However, these techniques are not applicable to our verification ex-

ercise because we have treated deadlock as a liveness property. Feijen and van Gasteren

treat deadlock as a safety property and prove invariance of apredicate that ensures at

least one statement of the program is enabled [FvG99, pg83].

5.3 The bakery algorithm

The bakery algorithm (Fig. 5.4) is an algorithm devised by Lamport forn-process mutual

exclusion that ensures any process wanting to enter its critical section is able to do so

[Lam74]. While the safety verification has been given much thought [Lam74, BK96,

Abr95, RBG95], the same cannot be said about progress. In this section, we prove that

the progress property of the bakery algorithm holds. Because the non-critical section

may contain non-terminating loops, mutual exclusion algorithms must inherently assume

weak fairness, and hence weak fairness is assumed for the bakery algorithm.

Our proof is inspired by the proof sketch by Shankar [Sha04],in particular, we use

the concept of apeer setandposition numberfor each process. We have formalised

the placement and assignment to the peer set, and the proof itself is simpler and more

formal.
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5.3.1 Specification

The code for the program is given in Fig. 5.4. We assume thatProc = 0..(n − 1) in

an n-process system, i.e., the process ids are natural numbers.We usep.ncs andp.cs

to denote the non-critical and critical sections of processp, respectively, which may be

composed of an unspecified number of atomic statements. The program uses shared

variablesTN: Proc → N andCN: Proc → B, whereTNp denotes the ticket number of

processp, andCNp, determines whether or notp is choosing a ticket number (executing

lines 2-3). Local variablemp is used to calculate the value ofTNp, and variablevp is used

to iterate through the loop atp6.

To determine if a process, sayq, is ahead of processp, checking the value ofTNq

alone is not sufficient because it is possible forTNp to be equal toTNq. A tie is broken by

also considering the value of the process id, i.e., the program also uses a lexicographical

relation on pairs(TNp, p). Thus, if(TNq, q) < (TNp, p) holds, then either processq has

a smaller ticket number thanp, or bothq andp have the same ticket number, butq has a

smaller process id. Note that(TNq, q) = (TNp, p) is only possible ifp = q.

Before executingp.cs, processp allocates itself a ticket number that is larger than

the ticket numbers allocated to all other processes (lines 2-3). Then, having determined

that no other process is ahead of itself (loop atp6), processp enters its critical section

i.e., executesp.cs. The loop atp6 ensures that each processvp ∈ Proc is not currently

choosing a ticket number (line 7) andvp is not ahead ofp, i.e., (TNvp, vp) is not smaller

than(TNp, p) (line 8). If TNvp = 0, this indicates thatvp has not chosen a ticket number,

and because¬CNvp held at line 7, if processvp chooses a ticket number,TNvp > TNp is

guaranteed to hold.

We have also annotated the program and included an assignment to auxiliary variable

PSat p3, wherePSp denotes the peer set of processp. We present the details ofPSand

the auxiliary assignment toPSin Section 5.3.2.

For a processp, we define sets

Np =̂ labels(0: p.ncs) − {0}

Cp =̂ labels(10: p.cs) − {10}
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to identify the labels within the non-critical and criticalsections ofp, respectively. We

assume that the critical section ofp terminates, i.e.,

pcp ∈ Cp ∪ {10} pcp = 11. (5.18)

The progress requirement of the program is that any process that completes its non-

critical section is able to enter its critical section, which may be expressed formally as

Live =̂ pcp ∈ 1..10 pcp ∈ Cp.

PropertyLive clearly holds if the loop atp6 terminates and individual progress holds at

p7, p8 andp9. It is straightforward to see that the loop terminates usingvariantN − vp

which is local to processp. Furthermore, individual progress atp9 is trivial due to weak

fairness. Thus we obtain the following proof obligation:

pcp ∈ {7, 8} pcp 6∈ {7, 8}. (5.19)

We use the following properties of processp in the proof

2(pcp ∈ 2..4 ⇔ CNp) (5.20)

2(pcp ∈ Np ∪ 0..3 ⇔ TNp = 0) (5.21)

2(∀q:Proc−{p} (TNp, p) 6= (TNq, q)) (5.22)

Invariant (5.20) states thatp is in a ‘choosing’ state iffpcp ∈ 2..4, (5.21) states thatp

does not have a ticket number iffpcp ∈ Np ∪ 0..3, and (5.22) states that the priority of

processp, i.e., the value of(TNp, p) is unique.

5.3.2 Proof strategy

The processes that have chosen a ticket number form a queue, where the position of

processp in the queue depends on the pair(TNp, p), i.e., the ticket number and process

id pair. The idea of the proof is to show that the process at thefront of the queue always

executes its critical section, and furthermore each process eventually reaches the front of

the queue. The program does not use a queue data structure as such, instead, following
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Shankar, we letPosp be the relative position of processp in relation to the other processes

that have chosen a ticket number [Sha04]. Thus, we define

Posp =̂ size({q ∈ Proc | TNq 6= 0 ∧ (TNq, q) < (TNp, p)})

which determines the number of processes beforep in the queue.

Because it is possible for two or more processes to choose thesame ticket number,

a process can enter the queue in front of processes that have already chosen a ticket

number (thus impeding their progress). Hence following Shankar, we distinguishpeer

processesas processes that are choosing a ticket number whilep is also choosing a ticket

number. A peer process ofp may choose the same or smaller ticket number thanp, and

thus enter the queue beforep even ifp is already in the queue. The key observation is

thatp can be impeded by processq after entering the queue only ifq is a peer ofp, which

is expressed by the assertion atp3.

In order to identify the peers of processp, we augment the program with auxiliary

variablePS, which is updated atp3. This enablesp to determine the processes that are

still choosing a ticket number whenp has chosen one. Processp also removes itself

from eachPSq to indicate thatp has chosen a ticket number. In particular, we augment

the assignment atp3 with auxiliary assignmentPS := (λq:Proc if q 6= p then PSq −

{p} else {r ∈ Proc − {p} | CNr}). After execution ofp3, PS is updated so thatp is

removed from the peer set of allq 6= p, while the peer set ofp is updated to include all

processesr for whichCNr holds.

We state three further properties involvingPosp

2((size(PSp), Posp) = (0, 0) ⇒ (∀q:Proc−{p} (vq, pcq) 6= (N, 6))) (5.23)

(∀q:Proc (∀p:Proc−{q} stq.((size(PSp), Posp) = (0, 0)))) (5.24)

2((size(PSp), Posp) = (0, 0) ⇒ (∀q:Proc−{p} pcq = 8 ∧ vq = p ⇒ ¬gq.q8)) (5.25)

By (5.23), if processp has no peers and no process is ahead ofp in the queue, then no

processq can be executingq6 with vq = N, by (5.24),size(PSp) = 0 ∧ Posp = 0 is

stable in allq 6= p, and by (5.25), ifsize(PSp) = 0 ∧ Posp = 0 holds, all processesq 6= p

are blocked atq8 during thepth iteration of the loop atq6.
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5.3.3 The proof

The progress requirement holds if (5.19) holds. The idea of the proof is to show that if

pcp ∈ {7, 8} andp is first in the queue, i.e.,(size(PSp), Posp) = (0, 0) then eventually

pcp 6∈ {7, 8}. We must also show that each process reaches the front of the queue, i.e,

size(PSp) > 0 ∨ Posp > 0  (size(PSp), Posp) = (0, 0). That is, by Theorem 2.22

(transitivity), the proof of (5.19) follows if each of the following hold.

pcp = 7 ∧ (size(PSp), Posp) = (0, 0) pcp 6= 7 (5.26)

pcp = 8 ∧ (size(PSp), Posp) = (0, 0) pcp 6= 8 (5.27)

size(PSp) > 0 ∨ Posp > 0 (size(PSp), Posp) = (0, 0) (5.28)

Proof of (5.26). Let q = vp. Progress atp7 is impeded by guard¬CNq. We show

that(5.26) holds for any value ofq. The proof is complicated by the fact that the guard

of p7 is not stable in processq becauseCNq may be falsified. We use Lemma 2.29

(induction), which results in proof obligation (5.3.3) below. We now describe the well-

founded relation that we use.

A well founded relation onPCq alone is not sufficient due to the loop atq6. Thus,

we consider a relation that also takesvq into account because the last statement in the

loops atq6 increases the value ofvq, andq6 terminates whenvq = N. We define a well-

founded relation,(≺, PCq), that corresponds to the reverse execution order ofq with

base9 because statementq9 increases the value ofvq. That is, the well-founded relation

on PCq is

9 ≺ 8 ≺ 7 ≺ 6 ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 1 ≺ nj ≺ 0 ≺ 11 ≺ cj ≺ 10

wherenj ∈ Np andcj ∈ Cp. We define

loopPC=̂ 6..9

to be the labels within the loop atq6. Noting that the loop atq6 terminates whenvq = N

and thatvq is incremented by the last statement of the each loop, we define the following
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well-founded relation(≺≺, (0..N, PCq)), where

(v′q, pc′q) ≺≺ (vq, pcq) ≡ (pcq 6∈ loopPC∧ pcq ≺ pc′q) ∨

(pcq ∈ loopPC∧ vq < N ∧

(vq < v′q ∨ (vq = v′q ∧ pc′q ≺ pcq)))

(5.29)

Thus,(v′q, pc′q) ≺≺ (vq, pcq) holds if q is not executing withinloopPCandpc′q ≺ pcq

holds, orq is executing statements withinloopPC, vq < N holds, and eithervq is in-

creased orvq is unchanged andpc′q ≺ pcq holds. Although the base of(≺, PCq) is 9, the

base of(≺≺, (0..N, PCq)) is (N, 6), i.e., whenvq = N andpcq = 6, the value of(vq, pcq)

can no longer be reduced.

Now, let us define

PP =̂ pcp = 7 ∧ (size(PSp), Posp) = (0, 0)

which is the predicate on the left hand side of the in (5.26). Application of Lem-

ma 2.29 (induction) to prove (5.26), results in the following proof obligation:

(∀n:0..N,j:PCq PP∧ (vq, pcq) = (n, j) pcp 6= 7 ∨ (PP∧ (vq, pcq) ≺≺ (n, j)))

which holds by Lemma 4.81 if

(∀n:0..N,j:(PCq−Nq)−Cq PP∧ (vq, pcq) = (n, j) pcp 6= 7 ∨ (PP∧ (vq, pcq) ≺≺ (n, j)))

(5.30)

The proof of (5.30) now follows by case analysis on the possible values ofn andj.

• Casesj ∈ 1..5 ∪ {11}. These cases are proved using Lemma 4.65 (deadlock

preventing progress) becausepcq = j ⇒ gq.qj holds and eachqj is guaranteed to

reduce the value of(n, j) and preservePP, i.e.,

[ PP∧ (vq, pcq) = (n, j) ⇒ gq.qj ∧ wpq.qj.(PP∧ (vq, pcq) ≺≺ (n, j)) ].

• Casesj ∈ 7..9. These cases hold by Lemma 4.65 (deadlock preventing progress)

because by (5.20),pcq ∈ 6..8 ⇒ ¬CNq holds. So either the value of(vq, pcq) is

reduced andPP is maintained, orp is executed andpcp 6= 7 is established, i.e.,

[ PP∧ (vq, pcq) = (n, j) ⇒

(gp.p7 ∨ gq.qj) ∧ wpp.p7.(pcp 6= 7) ∧ wpq.qj .(PP∧ (vq, pcq) ≺≺ (n, j)) ].
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• Casej = 6.

– If n ∈ 0..N − 1, the proof follows by Lemma 4.65 (deadlock preventing

progress) because like casesj ∈ 7..9, by (5.20),pcq ∈ 7..9 ⇒ ¬CNq holds.

– If n = N, the proof holds because by (5.23),2¬(PP ∧ (vq, pcq) = (N, 6))

holds.

Proof of (5.27). Becausepcp = 8 ∧ (size(PSp), Posp) = (0, 0) ⇒ gp.p8 holds, due

to (5.24) and weak fairness, the proof follows via a straightforward application of Theo-

rem 4.42 (immediate progress under weak fairness).

Proof of (5.28). We use Lemma 2.29 (induction) and a well-founded lexicographic

relation on the possible values of(size(PSp), Posp), which results in the following proof

obligation:

(size(PSp), Posp) = (k1, k2) 

(size(PSp), Posp) = (0, 0) ∨ (size(PSp), Posp) < (k1, k2).

(5.31)

Let us assume thatk, k1 andk2 are non-zero natural numbers. Due to weak-fairness, any

processq such thatCNq holds eventually chooses a ticket number (assigns toTNq), and

hence the following holds:

size(PSp) = k size(PSp) < k. (5.32)

We perform case analysis on the possible value of(size(PSp), Posp).

• Case(size(PSp), Posp) = (k1, k2). By (5.32),

(size(PSp), Posp) = (k1, k2) (size(PSp), Posp) < (k1, k2)

which, recalling thatk1, k2 > 0, implies (5.31).

• Case(size(PSp), Posp) = (0, k). We use the following invariant:

2((size(PSp), Posp) = (0, k) ⇒ (∃q:Proc−{p} TNq 6= 0 ∧ Posq = 0)) (5.33)

which gives us the following calculation, where we recall thatk, k1 > 0.
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(size(PSp), Posp) = (0, k)

 {Lemma 2.26 (implication) using (5.33)}{instantiate existential}

(size(PSp), Posp) = (0, k) ∧ TNq 6= 0 ∧ Posq = 0

 {case analysis onsize(PSq)}

(size(PSp), Posp) = (0, k) ∧ TNq 6= 0 ∧

((size(PSq), Posq) = (k1, 0) ∨ (size(PSq), Posq) = (0, 0))

 {inductive application of (5.32)}

(size(PSp), Posp) = (0, k) ∧ TNq 6= 0 ∧ (size(PSq), Posq) = (0, 0)

 {Lemma 2.26 (implication)}{(5.21)}

(size(PSp), Posp) = (0, k) ∧ pcq ∈ CNq ∪ 4..11 ∧ (size(PSq), Posq) = (0, 0)

 {(5.26) and (5.18)}

(size(PSp), Posp) = (0, k) ∧ pcq = 11 ∧ (size(PSq), Posq) = (0, 0)

 {weak-fairness}

(size(PSp), Posp) < (0, k)

5.3.4 Discussion

The bakery algorithm solves the mutual exclusion problem for n processes by establish-

ing a relation on the ticket number and process id of each process, which essentially

allows one to form a queue of processes waiting to enter theircritical section. Although

processes may join the queue ahead of other processes, because a process can only be

impeded a finite number of times, we can show that each processis able to enter its

critical section and make progress.

Although the program is several times more complex than the initialisation protocol,

the proof is relatively straightforward after introducingthe appropriate auxiliary assign-

ments, which is used to construct the well-founded relation. The longest part of the proof

is the case analysis on the values of(0..N, PCq), which was made more complicated by

the loop atq6, but each of the cases could be discharged using Lemma 4.65 (deadlock

preventing progress).



5.4 NON-BLOCKING PROGRAMS 121

5.4 Non-blocking programs

In this section, we provide example proofs of a program that is lock-free but not wait-free

(Section 5.4.1) and a program that is obstruction-free, butnot lock-free (Section 5.4.2).

5.4.1 A lock-free program

Let L be the program in 5.5. In this section, we prove thatL is lock free, but is not wait

free, thus completing the proof of Theorem 3.42. Lock-freedom proofs are complicated

because it is possible for a process to continually retry theoperation being executed.

Further complications are introduced because it is possible to construct lock-free pro-

grams where a process canhelpcomplete the operation of a different process, causing

additional points of interference (see [CD07, CD09] for details).

We use the technique of Colvin and Dongol [Don06b, CD07, CD09], which allows

the program-wide lock-freedom property to be proved by examining the execution of a

single process at a time. An advantage of this method is that interleaved executions of

two or more processes does not need to be considered, which allows the technique to

scale to any program with an arbitrary finite number of processes. A second advantage

is that the proofs are supported by the PVS theorem prover. Colvin and Dongol have

shown the effectiveness of their technique by proving that anumber of complicated

examples from the literature are lock-free [CD07, CD09]. However, because the logic

has been specialised for proving lock-freedom, we do not include these proofs in this

thesis. Instead, we consider a simpler example to highlightthe main ideas behind Colvin

and Dongol’s technique.

Each operationIncp in L is responsible for incrementing the value of global variable

T. A process, sayp, executingIncp stores the value ofT in local variable attp (line X2).

Then,T is updated totp+1 if T has not been modified by some other process since it was

read atX2 (line X1). If T has been modified,p retriesIncp by returning toX2 in order to

re-read the value ofT1. After X0 is executed, operationIncp exits, andp returns to idle

(see Section 3.3.1). Recall that an idle process may begin execution of a new operation.

1In practice, the compare-and-swap guard atX1 can be implemented using a CAS primitive [MS96].
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The progress function overPC is defined as follows:

Π =̂ (λj:PC if j = X0 then {idle} else {X0}).

Hence a process atX0 makes progress if it becomes idle, while all other processesmust

reachX0 (from which it may become idle).

Most of the work using Colvin and Dongol’s method involves defining an appropriate

well-founded relation. To facilitate a proof that does not consider interleaved executions

of two or more processes, the well-founded relation takes anauxiliary interference de-

tection variable, intdp, into account, and to ensure that a process is on track to make

progress, the relation also considers the program counter,pcp [CD09].

The value ofintdp in L is tp 6= T. If intdp holds,p determines that some process

has made progress sincep executedX2, and hencep may retry theIncp operation. If

¬intdp holds, no interference has occurred, and hencep must proceed to completingIncp

itself, which we can determine by consultingpcp. A crucial observation is that in a lock-

free program, processes that cause interference (impede other processes from making

progress) are those that make progress themselves. InL, if a processp incrementsT at

X1, it impedes all other processesq 6= p at X1 from reachingX0, and causesq to retry

the loop. However,p, which successfully updatesT makes progress according toΠ by

reachingX0.

L is lock-free wrt Π. The well-founded relation is based on the following observa-

tions.

1. Interference is judged afterX2 has been executed, i.e.,pcp = X1 ∧ ¬intdp holds

and some process incrementsT so thattp < T holds (and hencepcp = X1 ∧ intdp

holds).

2. The only statements that cause interference are the statements that make progress

according toΠ.

3. If p has been interfered with, some process must have made progress, and hencep

is allowed to retry the loop inIncp and hence re-establishtp = T.
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4. If p has not been interfered with, thenp must proceed to making progress itself.

Using the technique of Colvin and Dongol [CD07, CD09], we define ProcInfo =̂

B ×L.PC and define

∆ =̂ L.Proc → ProcInfo.

For anyδ ∈ ∆, we letδp = (intdp, pcp) for any processp. The first value ofδp determines

whether or not the value oftp is equal toT, and the second value is the program counter

value. The (partial) well-founded relation(≺≺, ProcInfo) is defined as follows:

(false, X1) ≺≺ (true, X2) ≺≺ (true, X1) ≺≺ (true, idle).

Values ofProcInfo that are unreachable inL have been omitted from the relation. Note

that starting a new operation is regarded as making progressaccording to(≺≺, ProcInfo).

Because lock-freedom is a property of the whole program, we must define a well-

founded relation over∆, so that all processes are taken into account. The well-founded

relation(≺, ∆) is defined for any twoδ, γ ∈ ∆ as

δ ≺ γ ⇔ (∃p:L.Proc δp ≺≺ γp ∧ (∀q:L.Proc−{p} δq = γq)).

Thusδ ≺ γ iff one of the processes, sayp, gets closer to completingIncp and all the

progress of all other processes remain unchanged, which means p has not interfered

with any other process.

InstantiatingW to L.PC andK to pc, in Definition 3.37, we haveSS=̂ L.Proc →

L.PC and the proof thatL is lock free follows.

(∀ss:SSTr.A |= pc = ss (∃p:Proc pcp ∈ Π.ssp))

⇚ {Lemma 2.24 (anti-monotonicity)}

(∀ss:SSTr.A |= true (∃p:Proc pcp ∈ Π.ssp))

≡ {Lemma 2.29 (induction)}

(∀ss:SS(∀δ:∆ Tr.A |= δ = M  M ≺ δ ∨ (∃p:Proc pcp ∈ Π.ssp)))

≡ {definition ofδ}

(∀δ:∆ Tr.A |= δ = M  M ≺ δ ∨ (∃p:Proc δp(2) ∈ Π.Mp(2))))
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⇚ {Theorem 4.48 (immediate progress under minimal progress)}

(∀δ:∆ (∀L
pi

δ = M ⇒ (pcp = i ⇒ wpp.pi.(M ≺ δ ∨ (∃p:Proc δp(2) ∈ Π.Mp(2))))

≡ {logic, definition ofδ}

(∀p:Proc,δ:∆ δ = M ⇒ wpp.pδp(2).(M ≺ δ ∨ (∃p:Proc δp(2) ∈ Π.Mp(2))))

Because the processes are identical to each other, the prooffollows by case analysis

on the possible values ofδp for an arbitrary processp. It is straightforward to show that

the following holds:

2(pcp ∈ {X2, X0, idle} ⇒ tp 6= T)

which means that the proofs of casesδp ∈ {(false, X2), (false, X0), (false, idle)} are

trivial. Casesδp ∈ {(true, X2), (true, X1), (true, idle)} hold because execution ofp from

such a state is guaranteed to reduce the value ofδ: this is because the value ofδp is re-

duced and the value ofδq for q 6= p is remains unchanged. Finally casesδp ∈ {(true, X0),

(false, X1)} hold because execution ofp is guaranteed to establishδp(2) ∈ Π.Mp(2), i.e.,

p makes progress according toΠ.

L is not wait-free wrt Π. To show that the program is wait-free, we must prove (3.35),

i.e., that every process makes progress. However, there exists an infinite traces and

processp such that(pcp = X2).su for each even valueu and(pcp = X1).su for each odd

u. Hence the program is not wait free.

5.4.2 An obstruction-free program

LetO be the program in Fig. 5.6. We prove thatO is obstruction-free, but not lock-free.

The program has a shared variableB of type Boolean and two operations:Xp andYp.

The progress requirement as before is that each operation reaches a point from which

it can terminate, i.e.,X0 andY0. Thus our progress function is onO.PC and is defined

as follows:

Π =̂ (λj:PC if j ∈ {X0, Y0} then {idle} else {X0, Y0}).
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O is obstruction-free wrt Π. We consider obstruction freedom of an arbitrary pro-

cessp. To apply Definition 3.40, we takeK to be pc and W to beO.PC. For any

ss:O.Proc → O.PC, traces ∈ Tr.O andq 6= p, if s ⊢ pc = ss pcq 6= ssq, then

(3.41) is trivially satisfied, thus, we consider traces for which q does not execute any

statements. Due to minimal progress, the following clearlyholds:

s⊢ (∀q:Proc−{p}(∃j:PCτ

q
2(pcq = j))) ⇒ 23(pcp ∈ {X0, Y0, idle}).

That is, if no process different fromp takes a step,p makes progress by reachingX0, Y0,

or idle.

O is not lock-free wrt Π. This holds because an execution of statementX2 can be

interleaved in between any two consecutive executions ofY2 andY1, and vice versa.

Hence there exists a trace in which none of the processes makeprogress with respect to

Π.

5.5 Related work

Chandy and Misra present verifications of the progress properties of a number of ex-

ample UNITY programs [CM88], however, their approach differs from ours due to the

different context of UNITY, and non-blocking programs are not considered. TLA di-

rectly incorporates LTL into the framework [Lam02]. Although progress properties can

be easily specified in TLA, the proofs themselves are more difficult, which Lamport

justifies by demoting the importance of progress as follows.

It [Liveness] typically constitutes less than five percent of a specification.

So, you might as well write the liveness part. However, when looking for

errors, most of your effort should be devoted to examining the safety part.

[Lam02, pg116]

We believe that when writing programs, reasoning about progress is indeed impor-

tant. For many programs, a large percentage of code can be devoted to progress. For

instance, consider Feijen and van Gasteren’s comment aboutDekker’s algorithm:
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... we wish to point out how little of the algorithm’s code is actually con-

cerned with the (partial) correctness — or safety. [FvG99,

pp90-91]

Obtaining a program that satisfies progress is not necessarily trivial, even when safety

already holds [GD05].

We have shown that the logic from Chapter 4 can be used to verify safety and prog-

ress. However, our ultimate aim is to use the theory to perform progress-based program

derivations in the style of Feijen and van Gasteren [FvG99],which is the subject of

Chapter 7. In particular, Chapter 7 contains a derivation ofthe correct version of the

initialisation protocol from the incorrect version using progress-based arguments.
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Init: pc, CN, TN := (λp:Proc 0), (λp:Proc false), (λp:Proc 0)

Processp

∗[

0: p.ncs ;

1: CNp := true ;

2: mp := max{TNq | q ∈ Proc} ;

3: {(∀q (mp, p) < (TNq, q) ⇒ p ∈ PSq)}

TNp, PS:=

mp + 1, (λq:Proc if q 6= p then PSq − {p} else {r ∈ Proc − {p} | CNr}) ;

4: CNp := false;

5: vp := 0 ;

6: do vp < N →

7: 〈if ¬CNvp → skip fi〉 ;

8: 〈if TNvp = 0 ∨ (TNp, p) ≤ (TNvp, vp) → skip fi〉 ;

9: vp := vp + 1

od ;

10: p.cs ;

11: TNp := 0

]

(5.18)p: pcp ∈ Cp ∪ {10} pcp = 11

(5.20)p: 2(pcp ∈ 2..4 ⇔ CNp)

(5.21)p: 2(pcp ∈ Np ∪ 0..3 ⇔ TNp = 0)

FIGURE 5.4: Then-process bakery algorithm
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Init: pc, t := (λp:Proc idle), (λp:Proc −1); T := 0

Incp =̂

∗[

X2: tp := T;

X1: ife 〈T = tp → T := tp + 1〉

X0: exit

efi

]

FIGURE 5.5: A lock-free program

Init: pc := (λp:Proc idle)

Xp =̂ Yp =̂

∗[

X2: B := true ;

X1: ife B →

X0: exit

efi

]

∗[

Y2: B := false;

Y1: ife ¬B →

Y0: exit

efi

]

FIGURE 5.6: An obstruction-free program



6
Program refinement

Feijen and van Gasteren describe how programs may be derivedfrom an initial spec-

ification by carefully considering their safety properties[FvG99]. These techniques

are extended by Dongol and Mooij so that one may also considerprogress properties

[DM06, DM08]. A derivation starts from a program in which thedesired properties of

the code are expressed via queried properties, and the goal is to derive a program with

additional code but no queried properties. In their methods, although each safety and

progress property is given formal consideration, the derivations themselves are informal

because a program may be arbitrarily modified.

In this chapter, we formalise the derivation techniques of Feijen and van Gasteren and

Dongol and Mooij and relate their work to refinement [dRE96].(See Section 6.5 for a

more complete survey of related work.) The concept of a queried property is formalised

as an enforced property, where a program with an enforced property is a program whose

129
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traces are restricted to those that satisfy the property. Bygiving a formal meaning to

enforced properties, we may define refinement in the normal way, i.e, each observable

trace of the refined program with stuttering removed must be an observable trace of the

original specification with stuttering removed. Because trace refinement is difficult to

work with in practice and because the state space of the refined program may change,

we also relate our techniques to data refinement.

Further formalisation is provided through the use of framedstatements (see Chap-

ter 2). A statement, sayS, with a frame variable, sayx of typeT, (writtenx ·[[S]]) behaves

asS, but in addition may modifyx to any value withinT. We present lemmas that allow

one to introduce variables to the frame of a program as well asrefine programs with

framed statements.

In Section 6.1 we present our notions of trace and data refinement, and show that if

C data refinesA, thenC also trace refinesA; in Section 6.2, we formalise the concept of

an enforced property; in Section 6.3 we define refinement in the presence of frames; in

Section 6.4 we describe how a statement may be introduced to aframe.

Contributions. The work in this chapter was developed in collaboration withIan

Hayes. The concepts in Section 6.1 are not new. Our treatmentis inspired by Back

and von Wright [Bac89a, BvW94] and Morgan [Mor90]. However,the formalisation

of enforced assertions (Section 6.2) and the theorems for program transformation (Sec-

tions 6.2 and 6.3) are novel. The work in Section 6.2 and Section 6.3 is from [DH09].

6.1 Trace and data refinement

In this section we review trace refinement (Section 6.1.1), statement refinement (Sec-

tion 6.1.2) and data refinement (Section 6.1.3) in the context of the programming model

from Chapter 2.
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6.1.1 Trace refinement

To show that a program trace refines another, one must distinguish theobservablevari-

ables of the program (variables that interact with the environment) fromprivatevariables

(those that are not visible to the environment). Hence we defineA.Ov be the set of ob-

servable variables in programA. Although we cannot observepcp, we can observe

whether or not a processp has terminated, and hence we assume the existence of a spe-

cial observable variable,termp, whose value is a Boolean equal topcp = τ . For a state

σ of programA, we defineobsA(σ) =̂ A.Ov � σ to be the function that restrictsσ to

the observable variables, whereSS� RRdenotes the domain restriction of relationRR

to setSS.

In order to restrict the trace of a program to the observable states, we define function

rP (remove private state):

rPA: seq(Σ↑
VAR) → seq(Σ↑

A.Ov)

such that for any sequences of statess andt, the following holds:

s = rPA(t) ≡ dom(s) = dom(t) ∧

(∀u:dom(t) (tu 6= ↑ ⇒ su = obsA(tu)) ∧ (tu = ↑ ⇒ su = ↑)).

Recall thatΣ↑
VAR: (VAR→ VAL) ∪ {↑}.

Given thats = rPA(t) for some tracet of a programA, it is common forstuttering

to exist within s, i.e., consecutive statessu, su+1 such thatsu = su+1. Statessu and

su+1 are stuttering exactly when transitiontu →֒A tu+1 does not modify any observable

variables. While a finite number of consecutive stutteringsof su may be represented by

a singlesu, if su consecutively stutters an infinite number of times, we will never observe

a change state inA, and hence we treat infinite stuttering as divergence. In particular, if

su consecutively stutters infinitely often, removing the stuttering froms should result in

a sequence whose second last element issu and last element is↑.

We define functionrS (remove stuttering) that removes finite stuttering from a se-

quence of states:

rS: seq(Σ↑) → seq(Σ↑)
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Note that the given sequence may be divergent (its last statemay be↑), in which case

the sequence obtained after removing stuttering will also be divergent. For a sequence

s, our strategy for definingrS will be to construct a sequence of sequences,K, such that

s = K(0)aK(1)a . . . , i.e., the concatenation of all the sequences inK is equivalent tos.

Furthermore, for each indexu ∈ dom(K), K(u) is a finite or infinite sequence repeating

a single stateσ ∈ ran(s), i.e., dom(K(u)) ⊆ N ∧ (∃σ:Σ ran(K(u)) = {σ}) holds.

Finally, for u ∈ dom(K)+, we require that the range of eachK(u − 1) is different from

K(u). Thus, for example, ifs = 〈x, x, y, y, z, z, z〉, thenK is 〈〈x, x〉, 〈y, y〉, 〈z, z, z〉〉; and

if s = 〈x, x, y, y, z, z, . . . z, . . . 〉, i.e.,z is repeated infinitely often, thenK is 〈〈x, x〉, 〈y, y〉,

〈z, z, . . . 〉〉.

For any tracet of a program, ift contains infinite stuttering, the infinite stuttering

must occur at the end of the sequence. That is,s is not of the form(s′a (N×{σ}))a s′′

wheres′ ands′′ are sequences of states,(N × {σ}) is an infinite sequence that repeats

stateσ, anda is sequence concatenation. Hence we define

cat: seq(seq(Σ↑)) 7→ seq(Σ↑)

so that the following holds:

(∀u:dom(K) dom(K(u)) = N ⇒ dom(K) = 0..u) ⇒

(∀u:dom(K)(∀v:dom(K(u)) cat(K)((Σu−1
i=0 size(K(i))) + v) = K(u)(v))).

(6.1)

The antecedent of (6.1) ensures that the only infinite sequence withinK is the last se-

quence inK, while the consequent of (6.1) ensures that the elements incat(K) andK

match up. As an example, ifK = 〈〈x, x〉, 〈y, y〉, 〈z, z, z〉〉, thencat(K) = 〈x, x, y, y, z,

z, z〉, and for example(cat(K))(3) = K(1)(1).

For sequences of statess andt, we sayt = rS(s), i.e., t is s with stuttering removed

if we can find aK such thats = cat(K); for eachu ∈ dom(K), ran(K(u)) is exactly the

singleton set{tu}; and for eachu ∈ dom(K)+, ran(K(u − 1)) 6= ran(K(u)). Further-

more,

• if K is infinite, thens is infinite but does not contain infinite stuttering, and hence

t must be infinite,
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• if K is finite andlast(K) is infinite, thens must contain infinite stuttering, hence

we require the size oft to be one larger than the size ofK, and forlast(t) to be↑

(to indicate divergence), and

• if K is finite andlast(K) is also finite, thens represents a terminating execution

(and hence does not contain infinite stuttering) thus, we require thatdom(K) =

dom(t).

So, for example, ifs = 〈x, x, y, y, x, x, y, y, . . . 〉 thenK = 〈〈x, x〉, 〈y, y〉, 〈x, x〉, 〈y, y〉, . . . 〉

andrS(s) = 〈x, y, x, y, . . . 〉; if s = 〈x, x, y, y, z, z, z, . . . , z, . . . 〉 thenK = 〈〈x, x〉, 〈y, y〉,

〈z, z, z, . . . 〉〉 andrS(s) = 〈x, y, z, ↑〉; and ifs = 〈x, x, y, y, z, z, z〉 thenK = 〈〈x, x〉, 〈y, y〉,

〈z, z, z〉〉 andrS(s) = 〈x, y, z〉.

Formally, for any two sequences of statess∈ seq(Σ↑) andt ∈ seq(Σ↑),

t = rS(s) ≡

(∃K:seq(seq(Σ↑)) (∀u:dom(K) • dom(K(u)) = N ⇒ dom(K) = 0..u) ∧ (6.2)

s = cat(K) ∧ (∀u:dom(K) ran(K(u)) = {t(u)}) ∧ (6.3)

(∀u:dom(K)+ ran(K(u− 1)) 6= ran(K(u))) ∧ (6.4)

(dom(K) = N ⇒ dom(t) = N) ∧ (6.5)

(dom(K) 6= N ∧ dom(last(K)) = N ⇒ (6.6)

dom(t) = 0..size(K) ∧ last(t) = ↑) ∧

(dom(K) 6= N ∧ dom(last(K)) 6= N ⇒ dom(t) = dom(K))). (6.7)

Conjunct (6.2) ensures that thecat definition is applicable, i.e., thatK satisfies the

antecedent of (6.1). Conjunct (6.3) sets up a sequence of sequencesK so that the concate-

nation of the elements ofK equalss, and furthermore each sequenceK(u) is a sequence

of t(u) repeated some number of times. Conjunct (6.4) ensures that eachK(u − 1) and

K(u) are sequences of different states. Conjunct (6.5) says thatif K is infinite, thent

must be infinite; conjunct (6.6) says that ifK is finite, but the last sequence inK is in-

finite, thent is a finite sequence that ends in divergence; conjunct (6.7) says that ifK is

finite and the last sequence inK is also finite, thent must be finite and not diverge.
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A programC trace refines programA if each observable trace ofC with stuttering

removed is equivalent to some observable trace ofA with stuttering removed.

Definition 6.8 (Trace refines). If A andC are programs, thenC trace refinesA, written

A ⊑Tr C, iff (∀t:Tr.C(∃s:Tr.A rS(rPA(s)) = rS(rPA(t)))).

Trace refinement allows one to develop a concrete program that aborts if the abstract

program aborts. Furthermore, if the abstract program suffers from infinite stuttering,

then the concrete implementation may also stutter infinitely often. Note that if every

trace of the abstract program stutters infinitely, then every trace of the concrete will

also stutter infinitely. However, an aborting abstract program may be refined by a non-

aborting program by reducing the set of possible traces.

Trace refinement preserves temporal properties given that the property does not men-

tion the©©© operator.

Lemma 6.9. [Gro07] SupposeA andC are programs and F is a temporal formula that

does not contain the©©© operator. IfA ⊑Tr C andTr.A |= F, thenTr.C |= F.

The following lemmas trivially hold for trace refinement.

Lemma 6.10(Trace inclusion). For programsA andC, if Tr.C ⊆ Tr.A thenA ⊑Tr C.

Lemma 6.11. If A, B andC are programs, then the following hold, i.e., trace refinement

is a pre-order.

(Reflexivity) A ⊑Tr A

(Transitivity) A ⊑Tr B andB ⊑Tr C, thenA ⊑Tr C

It is clear that if the abstract program does not diverge, then any trace refinement of

the program cannot diverge. This is captured by the following lemma.

Lemma 6.12(Non-divergence). SupposeA is a non-divergent program andA ⊑Tr C,

thenC is also non-divergent.
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6.1.2 Statement refinement

We first define refinement between two sequential statements.A statementSa is refined

by a statementSc iff any behaviour ofSc is a possible behaviour ofSa. Note that, due

to blocking, refinement of a statement in programA to give programC may not imply a

trace refinement.

Definition 6.13 (Statement refinement [Mor90]). Suppose USa and USc are unlabelled

statements; andΣ is a state space. We say USc refinesUSa (written USa ⊑ USc) iff

(∀R:P Σ [ wp.USa.R⇒ wp.USc.R]).

Similarly for labelled statements LSa and LSc executed by process p, LSc refinesLSa

(written LSa ⊑ LSc) iff (∀R:P Σ [ wpp.LSa.R⇒ wpp.LSc.R]).

If USa ⊑ USc andUSc ⊑ USa, we writeUSa ⊑⊒ USc. Note thatUSc may block more often

thanUSa (strengthen the guard), reduce the non-determinism ofUSa, or may terminate

more often thanUSa. (Similarly,LSc andLSa.)

Lemma 6.14.For any statements S1 and S2, the following holds:

1. (Reflexivity) S1 ⊑ S1

2. (Transitivity) If S1 ⊑ S2 and S2 ⊑ S3, then S1 ⊑ S3

For statementsS1 andS2 and predicateP, we define:

S1 ⊓ S2 =̂ if true→ S1 [] true→ S2 fi

⌊P⌋ =̂ 〈if P → skip fi〉.

i.e., S1 ⊓ S2 is thedemonic choicebetweenS1 andS2. We use statement to mean unla-

belled or labelled statement. The following is a standard result of refinement calculus

[BW98].

Lemma 6.15(Statement refinement). Suppose IFS= if []u(Bu → Su) fi is a statement

where each Bu is a predicate and Su is a statement; x is a variable of type T; S1, S2 and

S3 are statements; and P and Q are predicates. Then, each of the following holds:
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1. (Guard strengthening)

(a) skip ⊑ ⌊P⌋

(b) S1 ⊑ if P → S1 fi

(c) ⌊P⌋ ⊑ ⌊Q⌋, provided[ Q ⇒ P ]

2. (Reduce non-determinism)

(a) IFS ⊑ ⌊Bu⌋; Su

(b) x :∈ T ⊑ x := v, provided[ v ∈ T ]

3. (Monotonicity) If S2 ⊑ S3 then

(a) S1; S2 ⊑ S1; S3

(b) S2; S1 ⊑ S3; S1

(c) S1 ⊓ S2 ⊑ S1 ⊓ S3

4. (Distributivity)

(a) (S1 ⊓ S2); S3 ⊑⊒ (S1; S3) ⊓ (S2; S3)

(b) S1; (S2 ⊓ S3) ⊑⊒ (S1; S2) ⊓ (S1; S3), provided S1 is conjunctive

(c) S1; (
d

u:I Su) ⊑
d

u:I S1; Su , where I is a non-empty index set [Sek08]

5. (Commutativity)

(a) ⌊P⌋; ⌊Q⌋ ⊑⊒ ⌊P ∧ Q⌋ ⊑⊒ ⌊Q⌋; ⌊P⌋

(b) S1 ⊓ S2 ⊑⊒ S2 ⊓ S1

Lemma 6.16.For any conjunctive statement S and predicate P,

S; ⌊P⌋ ⊑ ⌊wp.S.P⌋; S.

Proof. For any predicateR, we have:

wp.(S; ⌊P⌋).R⇒ wp.(⌊wp.S.P⌋; S).R

≡ {wp definition}
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wp.S.(P ⇒ R) ⇒ (wp.S.P ⇒ wp.S.R)

≡ {logic}

wp.S.(P ⇒ R) ∧ wp.S.P ⇒ wp.S.R

≡ {S is conjunctive}

wp.S.((P ⇒ R) ∧ P) ⇒ wp.S.R

≡ {logic}

wp.S.(P ∧ R) ⇒ wp.S.R

≡ {wp is monotonic}

true 2

Lemma 6.17(Absorption). Suppose B1 and B2 are predicates; x is a variable of type T;

c1 and c2 are constants. Then the following hold:

1. ⌊B1⌋; ⌊B2⌋ ⊑⊒ ⌊B2⌋, provided[B2 ⇒ B1]

2. x :∈ T; x :∈ T ⊑⊒ x :∈ T

3. x := c1; x := c2 ⊑⊒ x := c2

Proof. The proofs are trivial exercises ofwp reasoning. 2

The following lemma allows one to introduce and remove explicit mention of the

guard of a statement with impunity.

Lemma 6.18(Guard). For any labelled statement pi in process p, pi ⊑⊒ ⌊gp.pi⌋; pi.

Proof. The proof follows by definition ofwp for labelled statements. 2

The next lemma states that one may introduce a statementpi given guard¬gp.pi.

Lemma 6.19(Disabled guard). If pi is a statement, then⌊¬gp.pi⌋ ⊑ ⌊¬gp.pi⌋; pi.

Proof. For an arbitrary predicateR, we have

wpp.(⌊¬gp.pi⌋; pi).R

≡ {wp definition}{definition ofgp}

wpp.pi.false⇒ wpp.pi .R

≡ {wp is monotonic}{logic}

true
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Therefore, for any predicateR, wpp.(⌊¬gp.pi⌋).R⇒ wpp.(⌊¬gp.pi⌋; pi).R. 2

The next lemma for propagating guards is from [BvW99, pg299]. See Definition 4.9

for definitions of conjunctive and disjunctive.

Lemma 6.20.For a statement S in process p and predicates P, Q

1. (⌊P⌋; S⊑ S; ⌊Q⌋) ≡ ¬P ⇒ wpp.S.(¬Q)

2. (S; ⌊P⌋ ⊑ ⌊Q⌋; S) ≡ (tp.S∧ Q ⇒ wpp.S.P), provided S is conjunctive

3. (S; ⌊P⌋ ⊑ ⌊Q⌋; S) ≡ (wpp.S.(¬P) ⇒ ¬Q ∨ wpp.S.false), provided S is disjunc-

tive

6.1.3 Data refinement

During program refinement, it is often necessary to perform adata refinement, where the

representation of the private (non-observable) state space of a program changes [Bac89a,

MV92, BvW99]. For example, the program counter of a process is not observable, and

hence if a new control point, sayk, is introduced to a process, sayp, the possible values

of pcp in the concrete program is increased to includek. A more complicated example

might involve replacing an abstract set by a concrete array data type. Recalling that

τ ∈ PCτ
p, for a programA, we define

stmt(A) =̂ {(p, i) | p ∈ A.Proc ∧ i ∈ PCτ
p}.

To prove data refinement between an abstract programA and a concrete program

C, we must partition the atomic statements ofC into those that have and do not have a

corresponding abstract statement. The labels of the atomicstatements within a process

are unique, however, labels may be re-used in between processes, i.e., it is not true that

for processesp 6= q, PCp ∩ PCq = {}. Thus, we define setsmain(C) andnew(C) that

contain pairs of typeProc × PC such that each of the following holds:

1. main(C) ⊆ stmt(A)
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2. new(C) ∩ stmt(A) = {}

3. main(C) = stmt(C) − new(C)

Each statement defined bymain(C) has an abstract counterpart, whereas each statement

defined bynew(C) does not. Note thatmain(C) 6= {} becausepτ is observable, i.e., for

every processp ∈ C.Proc, (p, τ) ∈ main(C).

We follow Gardiner and Morgan [GM93] and relate the variables of C andA using

a representation program, rep, which may not modify observable variables. Because

the representation program may include angelic and demonicchoice,rep covers both

forwards and backwards simulation (or simulation and co-simulation) [GM93]. The sets

of labels ofC andA (i.e., A.PCτ andC.PCτ ) may be different, and hence we allow

rep to explicitly modify pcp. However, in order to preserve the structure of the abstract

program, we require that each concrete main statement have the same initial label as

its abstract counterpart, thusrep must leavepcp = i invariant for all(p, i) ∈ main(C).

Recall that a statementS is strict iff wp.S.false≡ false.

Definition 6.21. For an abstract programA and concrete programC, a representation

program, rep is a strict terminating statement that takes a state of typeΣC.Var as input

and returns a state of typeΣA.Var as output. Furthermore, for each(p, i) ∈ main(C),

[ pcp = i ⇒ wp.rep.(pcp = i) ], and for each x∈ A.Ov, (∀v [ x = v ⇒ wp.rep.(x = v) ]),

i.e., rep does not modify observable variables,

Because(p, τ) ∈ main(C) for every processp, rep leavespcp = τ invariant. Thus, if

processp is terminated in the concrete state, it must be terminated inthe corresponding

abstract state.

For a programA, we usestut(A) ⊆ stmt(A) to identify the statements that do not

modify observable variables ofA and definenStut(A) to be the statements that modify

observable variables. It is clear thatstut(A) ∪ nStut(A) = stmt(A). For a concrete

programC, we definem stut(C) =̂ stut(C) − new(C) to be the main statements inC

that stutter. We require:

1. nStut(C) ⊆ nStut(A)
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2. m stut(C) ⊆ stut(A).

In order to distinguish the statements inA from those ofC, for eachp ∈ A.Proc, we

define the family of functions

ap: PCp → LS

which returns the atomic labelled statement at labeli of processp. (Similarly, we define

cp for p ∈ C.Proc.)

Our definition of data refinement is based on that of Back and von Wright [BvW99].

However, using our restriction onrep, i.e., that the program counters of the concrete

main statements match the corresponding abstract statements, we require that each con-

crete main statement be a refinement of the corresponding abstract statement. We also

require each new statement in the concrete program to refineid. Back and von Wright

only require that the non-deterministic choice over all concrete main statements refines

the non-deterministic choice over all abstract statements, and similarly, that the non-

deterministic choice over all new statements refinesid.

Definition 6.22 (Data refinement). SupposeA andC are programs; andrep is a repre-

sentation program, thenA ⊑rep C holds iff each of the following holds:

1. Initialisation:A.Init ⊑ C.Init; rep

2. Main statements:(∀(p,i):main(C) rep; ap.i ⊑ cp.i; rep)

3. New statements:(∀(p,i):new(C) rep ⊑ cp.i; rep)

4. Exit condition:

t.(rep; ⌊(∀A
pi

tp.pi)⌋) ⇒ (rep; ⌊(∀A
pi
¬gp.pi)⌋ ⊑ ⌊(∀C

pi
¬gp.pi)⌋; rep)

5. Internal convergence:

t.(rep; ⌊(∀A
pi

tp.pi)⌋) ∧ t.(rep; do [](p,i):stut(A) ap.i od) ⇒

t.(do [](p,i):stut(C) cp.i od)

Thus,C data refinesA (with respect torep) iff the initial statement ofA is refined by

the initial statement ofC followed by rep; each atomic statement defined bymain(C)
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refines the corresponding statement inA with respect torep; each new statement ofC

refinesid with respect torep; if A does not abort, then the concrete program must be

terminated when the abstract program is; and ifA does not abort and stutter infinitely

often, then the concrete program may not stutter infinitely often. If rep = skip, we write

A ⊑ C, and ifA ⊑rep C andC ⊑rep A, we writeA ⊑⊒rep C.

6.1.4 Relating trace and data refinement

We now show that ifA ⊑rep C holds, thenC trace refinesA. Our proof uses the result

of Back and von Wright, which proves trace refinement of action systems [BvW94]. An

action systemA is defined as follows:

A =̂ A0; do Ans [] As od

Action A0 initialises the action system, andAns andAs are the non-deterministic choices

over all non-stuttering and stuttering actions, respectively.

A program in our model may easily be transformed into an action system. We first

show how statements may be transformed into actions. Eachpi is either an atomic la-

belled statement or a guard evaluation. Furthermore,i: 〈US〉 j: is a special case of guard

evaluationi: ([]u〈Bu → USu〉) ku:, whereu has only one value,Bu = true andUSu = US.

We define,

toAS(i: ([]u〈Bu → USu〉 ku: )) =̂ []u(pcp = i ∧ Bu → USu; pcp := ku).

Note that action system rules allow one to rewrite a single branch

pcp = i ∧ B → IF ; pcp := j

as the non-deterministic choice[]u(pcp = i ∧ B ∧ Bu → USu; pcp := j). For a program

A we lettoAS(A) be the action system corresponding toA where

toAS(A) =̂ A.Init; do ([](p,i):nStut(A) toAS(pi)) []([](p,i):stut(A) toAS(pi)) od .

That is ifA = toAS(A), then

A0 = A.Init (6.23)
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Ans = [](p,i):nStut(A) toAS(ap.i) (6.24)

As = [](p,i):stut(A) toAS(ap.i). (6.25)

We defineA =̂ Ans ⊓ As. For n ∈ N, notationAn denotes then-fold iteration of action

A, andA∗ =̂ ⊓n:N An. Back and von Wright present the following theorem for trace

refinement of action systems.

Theorem 6.26(Trace refinement [BvW94]). Action systemC trace refines action system

A , i.e.,A ⊑Tr C if

A0; A∗
s ⊑ C0; C∗

s ; rep (6.27)

rep; Ans; A∗
s ⊑ Cns; C∗

s ; rep (6.28)

wp.rep.(t.A ∧ g.A) ⇒ g.C (6.29)

wp.rep.(t.A ∧ t.(do As od)) ⇒ t.(do Cs od) (6.30)

The following lemma states that if each concrete non-stuttering statement refines the

corresponding abstract statement, then there is a refinement over the non-deterministic

choice over all non-stuttering statements (similarly, stuttering statements). We note that

pi ⊑⊒ toAS(pi) for any atomic statementpi because their weakest preconditions are iden-

tical.

Lemma 6.31. If A and C are programs;A =̂ toAS(A) and C =̂ toAS(C) are their

respective action system representations;nStut(C) ⊆ nStut(A); and rep is a repre-

sentation program betweenC andA, such that,

(∀(p,i):nStut(C) rep; ap.i ⊑ cp.i; rep) (6.32)

thenrep; Ans ⊑ Cns; rep.

Proof.

rep; Ans

⊑⊒ {(6.24)}

rep; (⊓(p,i):nStut(A) toAS(ap.i))

⊑ {Lemma 6.15 (reduce non-determinism),nStut(C) ⊆ nStut(A)}
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{Lemma 6.15 (distributivity)}

⊓(p,i):nStut(C) (rep; toAS(ap.i))

⊑ {(6.32),pi ⊑⊒ toAS(pi)}

⊓(p,i):nStut(C) (toAS(cp.i); rep)

⊑⊒ {Lemma 6.15 (distributivity)}

(⊓(p,i):nStut(C) toAS(cp.i)); rep

⊑⊒ {(6.24), definition ofC }

Cns; rep

Lemma 6.33. If A and C are programs;A =̂ toAS(A) and C =̂ toAS(C) are their

respective action system representations;m stut(C) ⊆ stut(A), new(C) ∩ stmt(A) =

{}, andstut(C) = m stut(C) ∪ new(C); and rep is a representation program between

C andA, such that,

(∀(p,i):m stut(C) rep; ap.i ⊑ cp.i; rep) (6.34)

(∀(p,i):new(C) rep ⊑ cp.i; rep) (6.35)

then each of the following holds:

1. rep; (As ⊓ id) ⊑ Cs; rep

2. rep; A∗
s ⊑ C∗

s ; rep.

Proof (1).

rep; (As ⊓ id)

⊑⊒ {(6.25)}

rep; ((⊓(p,i):stut(A) toAS(ap.i)) ⊓ id)

⊑ {Lemma 6.15 (reduce non-determinism),

assumptions onm stut(C) andnew(C)}

{id ⊓ id ⊑⊒ id}

rep; ((⊓(p,i):m stut(C) toAS(ap.i)) ⊓ (⊓(p,i):new(C)id))

⊑ {Lemma 6.15 (distributivity)}

(⊓(p,i):m stut(C) (rep; toAS(ap.i))) ⊓ (⊓(p,i):new(C)rep)

⊑ {(6.34) and (6.35)}
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(⊓(p,i):m stut(C) (toAS(cp.i); rep)) ⊓ (⊓(p,i):new(C)(toAS(cp.i); rep))

⊑⊒ {Lemma 6.15 (distributivity)}

((⊓(p,i):m stut(C) toAS(cp.i)) ⊓ (⊓(p,i):new(C)toAS(cp.i))); rep

⊑⊒ {stut(C) = m stut(C) ∪ new(C)}

(⊓(p,i):stut(C) toAS(cp.i)); rep

⊑⊒ {(6.25)}

Cs; rep

Proof (2). We note thatA∗ ⊑⊒ ⊓n:N(A⊓ id)n, which gives us the following calculation:

rep; A∗
s

⊑⊒ {note above}

rep; (⊓n:N(As ⊓ id)n)

⊑ {Lemma 6.15 (distributivity)}

⊓n:N(rep; (As ⊓ id)n)

⊑ {proof below}

⊓n:N(Cn
s; rep)

⊑⊒ {Lemma 6.15 (distributivity) and definition}

C∗
s ; rep

We now show thatrep; (As ⊓ id)n ⊑ Cn
s; rep by induction onn. The base case is

trivial because(As⊓ id)0 ≡ id ≡ C0
s . Hence we haverep; (As⊓ id)0 ⊑⊒ rep ⊑⊒ C0

s ; rep.

Foru ∈ N, assumingrep; (As ⊓ id)u ⊑ Cu
s; rep, we have

rep; (As ⊓ id)u+1

⊑⊒ {definition}

rep; (As ⊓ id)u; (As ⊓ id)

⊑ {assumption}

Cu
s; rep; (As ⊓ id)

⊑ {proof of part 1}

Cu
s; Cs; rep

⊑⊒ {definition}

Cu+1
s ; rep 2
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We show that if programsA andC satisfy Definition 6.22, i.e.,A ⊑rep C, then the

conditions given in Theorem 6.26 hold for the equivalent action systems, which shows

thatA ⊑Tr C holds.

Theorem 6.36.SupposeA andC are programs; andrep a representation program such

thatA ⊑rep C holds, thenA ⊑Tr C holds.

Proof. We letA =̂ toAS(A) andC =̂ toAS(C) be the action system representations of

A andC, respectively.

Proof (6.27):

A0; A∗
s

⊑ {definitions ofA , C }{A ⊑rep C, initialisation}

C0; rep; A∗
s

⊑ {Lemma 6.33 part 2}

C0; C∗
s ; rep

Proof (6.28):

rep; Ans; A∗
s

⊑ {Lemma 6.31}

Cns; rep; A∗
s

⊑ {Lemma 6.33 part 2}

Cns; C∗
s ; rep

Proof (6.29):

t.(rep; ⌊(∀A
pi

tp.pi)⌋) ⇒ (rep; ⌊(∀A
pi
¬gp.pi)⌋ ⊑ ⌊(∀C

pi
¬gp.pi)⌋; rep)

⇛ {definitions of⊑ andA }

t.(rep; ⌊t.A⌋) ⇒ (∀P:PΣ wp.(rep; ⌊¬g.A⌋).P ⇒ wp.(⌊¬g.C⌋; rep).P)

≡ {definition ofA }{wp definition}

wp.rep.(t.A) ⇒ (∀P:PΣ wp.rep.(¬g.A ⇒ P) ⇒ (¬g.C ⇒ wp.rep.P))

⇛ {wp is monotonic}{logic}
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wp.rep.(t.A) ⇒ (∀P:PΣ wp.rep.(g.A) ⇒ (g.C ∨ wp.rep.P))

⇛ {logic}

wp.rep.(t.A) ⇒ ((wp.rep.(g.A) ⇒ g.C) ∨ (∀P:PΣ wp.rep.P))

⇛ {second disjunct of consequent isfalse}{rep is strict}

wp.rep.(t.A) ∧ wp.rep.(g.A) ⇒ g.C

⇛ {wp is monotonic}

wp.rep.(t.A ∧ g.A) ⇒ g.C

Proof (6.30):

t.(rep; ⌊(∀A
pi

tp.pi)⌋) ∧ t.(rep; do As od) ⇒ t.(do Cs od)

⇛ {logic}{definition ofA }{definition oft}

wp.rep.(t.A) ∧ wp.rep.(t.(do As od)) ⇒ t.(do Cs od)

⇛ {wp is monotonic}

wp.rep.(t.A ∧ t.(do As od)) ⇒ t.(do Cs od) 2

Because trace refinement preserves temporal properties without©©© (Lemma 6.9) and

data refinement implies trace refinement, it follows that data refinement preserves tem-

poral properties without©©©.

6.2 Enforced properties

We have seen how a queried assertion may be used to verify a safety property (Sec-

tion 4.2.3). In the derivation method of Feijen and van Gasteren [FvG99], a queried in-

variant is an important mechanism that motivates the next modification to the program.

That is, a program’s code is modified so that the queried invariants become valid. Dongol

and Mooij [DM06, DM08] use both queried invariants and queried leads-to properties to

allow both safety and progress to be taken into consideration. Because both safety and

progress properties may be expressed using LTL, we may generalise our techniques by

using queriedproperties, which may be any LTL formulae.

To distinguish our treatment from Feijen and van Gasteren and Dongol and Mooij,

we refer to properties with a ‘?’ as anenforcedproperty. An enforced property is a
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property that the program code on its own does not necessarily satisfy. Instead, we

ensure that the enforced property holds by definition, i.e.,an enforced property restricts

the traces of the program so that any trace that does not satisfy the enforced property is

discarded.

Definition 6.37 (Enforced property). Suppose G is a LTL formula. A programA with

enforced propertyG, denotedA ? G, is a program with the traces ofA ?G defined by

{s∈ Tr.A | s⊢ G}.

Note that an enforced property is used as a specification construct rather than a property

of the implementation, i.e., is used to denote what is required of the implementation

as opposed to a property that already holds. However, in programA ? G, because any

traces that do not satisfyG are discarded, we may useG to prove other properties of

A ? G. Also, one may always strengthen a program’s annotation by introducing new

enforced properties or strengthening existing properties, as highlighted by the following

lemmas.

Lemma 6.38(Property introduction). SupposeA is a program and G is an LTL formula,

then,A ⊑Tr A ?G holds.

Lemma 6.39(Property strengthening). For a programA and LTL formulae G, H, if

[ H ⇒ G ] thenA ? G ⊑Tr A ?H.

If a program satisfies an enforced property, then the ‘?’ may be removed, thereby

turning the enforced property into a program property.

Lemma 6.40.For programA and LTL formula G, ifTr.A |= G, thenTr.(A ?G) = Tr.A,

and henceA ?G ⊑⊒Tr A.

Introducing an enforced property to a program can make a program harder to imple-

ment. For example, consider the following example wherex is observable. The set of

traces is empty due to the restriction induced by the enforced condition.
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Init: x, y := 0, 0

ProcessX ProcessY

0: bY := false;

1: 〈if bY → skip fi〉 ;

2: y := x

τ : {? y = 1}

0: x := 1

τ : {x = 1}

? pcX = 1 pcX 6= 1

We note that applications of Lemmas 6.38 and 6.39 may also potentially reduce the

set of possible set of traces of a program to the empty set. Thus, our strategy during

derivations is to perform the weakest possible strengthening.

6.2.1 Enforced invariants

An important form of an enforced property is anenforced invariant, which is a formula of

the form2P, for a predicateP. If we add an enforced invariant, sayP, to a program, say

A, each atomic statement ofA blocks unless execution of the statement re-establishes

P. That is, enforcing2P in A is equivalent to replacing the initialisationA.Init by

〈A.Init; ⌊P⌋〉 and each atomic statementap.i in A by 〈ap.i; ⌊P⌋〉, where given that

ap.i ≡ i: 〈US〉 j:, we write〈ap.i; ⌊P⌋〉 as shorthand fori: 〈US; ⌊(pcp := j).P⌋〉 j:.

We note that we may not move the blocking to the start of the atomic statement.

To see this, consider the case wherex is a variable of typeB, ap.i ≡ i: 〈x :∈ B〉j:, and

P ≡ (pcp = j ⇒ x). We have

〈ap.i; ⌊P⌋〉

⊑⊒ i: 〈x :∈ B; (pcp := j).P〉 j:

⊑⊒ i: 〈x :∈ B; ⌊x⌋〉 j:

⊑⊒ i: x := true j:

Thus, statement〈ap.i; ⌊x⌋〉 has a trace that extends pasti to j becausex can be assigned

true. On the other hand, statementi: 〈⌊wp.(x :∈ B).x⌋; x :∈ B〉 j:, is equivalent to

i: 〈⌊false⌋; x :∈ B〉 j:, whose trace ends ati.
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To better understand the concept of an enforced invariant, we present a lemma that

describes a program without enforced invariants that is equivalent to one with an en-

forced invariant. We define the following assumption, whichis used in a number of

different lemmas.

Assumption 6.41.SupposeA is a program with no enforced invariants;(∀A
pi

tp.pi) holds

(i.e., no atomic statement inA diverges); and P∈ P ΣA.Var is a predicate.

We ignore divergence in this chapter due to the nature of the programs we are devel-

oping, i.e., we assume that each atomic statement terminates. At the start of a derivation,

it is easy enough to check absence of divergence, and furthermore, divergence cannot be

introduced at any point during a derivation.

Lemma 6.42(Enforced invariant). Given Assumption 6.41, ifC is a program such that

C.Init = (A.Init; ⌊P⌋) andC is obtained fromA by replacing each ap.i by 〈ap.i; ⌊P⌋〉

(i.e., cp.i ⊑⊒ 〈ap.i; ⌊P⌋〉), thenA ?2P ⊑⊒ C.

Proof. We note thatstmt(C) = stmt(A). Also, by Lemma 6.15 (guard strengthening),

for each(p, i) ∈ stmt(C), ap.i ⊑ ap.i; ⌊P⌋, and hencetp.(ap.i) ⇒ tp.(ap.i; ⌊P⌋). That

is, C does not diverge. We now show that show thatC ⊑⊒ A ?2P by appealing directly

to Definition 6.8.

s∈ Tr.C

≡ {definition of trace}

s0 ∈ initial(C) ∧ (∀u:dom(s)+ su−1 →֒C su)

≡ {definition of initial(C)}{definition of →֒C}{C does not diverge}

(∃σ:Σ (C.Init, σ)
us

−→
∗

(skip, s0)) ∧

(∀u:dom(s)+(∃(p,i):stmt(C) (cp.i, su−1)
ls

−→p (id, su)))

≡ {definitions ofC.Init andcp.i}{A.Proc = C.Proc}{stmt(A) = stmt(C)}

(∃σ:Σ ((A.Init; ⌊P⌋), σ)
us

−→
∗

(skip, s0)) ∧

(∀u:dom(s)+(∃(p,i):stmt(A) (ap.i; ⌊P⌋, su−1)
ls

−→p (id, su)))

≡ {logic}

(∃σ:Σ (A.Init, σ)
us

−→
∗

(skip, s0) ∧ (⌊P⌋, s0)
us

−→ (skip, s0)) ∧
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(∀u:dom(s)+(∃(p,i):stmt(A) (ap.i, su−1)
ls

−→p (id, su) ∧ (⌊P⌋, su)
us

−→ (skip, su)))

≡ {logic}

(∃σ:Σ (A.Init, σ)
us

−→
∗

(skip, s0)) ∧ P.s0 ∧

(∀u:dom(s)+(∃(p,i):stmt(A) (ap.i, su−1)
ls

−→p (id, su)) ∧ P.su)

≡ {definition of initial(A)}{logic}

s0 ∈ initial(A) ∧

(∀u:dom(s)+(∃(p,i):stmt(A) (ap.i, su−1)
ls

−→p (id, su))) ∧ (∀u:dom(s) P.su)

≡ {definition of →֒A and trace}{definition of2}

s∈ Tr.A ∧ (s⊢ 2P)

≡ {definition ofA ?2P}

s∈ Tr.(A ?2P) 2

We may equivalently replace each atomic statement inA ?2P so thatP appears as a

guard before and after each atomic statement.

Lemma 6.43(Enforced invariant (2)). Given Assumption 6.41, ifC.Init = A.Init; ⌊P⌋

and C is obtained fromA by replacing ap.i by 〈⌊P⌋; ap.i; ⌊P⌋〉 for each (p, i) ∈

stmt(A), thenA ?2P ⊑⊒ C.

Proof. The proof is virtually identical to that of Lemma 6.42 (enforced invariant). 2

We may also formalise?LC .P, ?GC .P and? stp.P to denote assertions in the program

that are enforced locally correct, globally correct, and stable respectively (see Chapter 4).

Note that the definitions below are not special cases of Definition 6.37 becauseLC pi .P,

GCpi .P andstp.P are properties of a single process, i.e., cannot be expressed as a LTL

formula on the program. Furthermore,?LC .P ∧ ?GC .P ≡ ? P.

Definition 6.44 (?LC, ?GC). Let A be a program; p∈ A.Proc; i ∈ PCp; and P be

a predicate. A program with assertion?LC .P at control point pi is a program whose

traces are defined by{s∈ Tr.A | s⊢ LC pi .P}.

Similarly, a program with assertion?GC .P in process p is a program whose traces are

defined by{s∈ Tr.A | s⊢ GCpi .P}.
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Definition 6.45 (? stp). SupposeA is a program; P is a predicate; and p∈ A.Proc is a

process.A ? stp.P is a program whose traces are defined by{s∈ Tr.A | s⊢ stp.P}.

Recalling that assertionP at control pointpi is equivalent to2(pcp = i ⇒ P), a

program with anenforced assertion? P at control pointpi is also equivalent to enforced

invariant ?2(pcp = i ⇒ P). Although it is tempting to think of{? P} pi as being

equivalent to〈⌊P⌋; pi〉, it is important to realise that this is not the case. While{? P} pi

ensures thatP holds for any state that satisfiespcp = i, 〈⌊P⌋; pi〉 only ensures that

pi is executed in a state in whichP holds, i.e., it is possible to obtain a state in which

pcp = i ∧ ¬P holds. In order to obtain an equivalent formulation of{? P} pi, one must

replace each statementqj in the program with〈qj; ⌊pcp = i ⇒ P⌋〉, whereqj may be the

same aspi. Thus, a statement in processp that establishespcp = i must also establishP,

and each statement in processq 6= p must preserveP if pcp = i holds.

The next lemma formalises the discussion on establishing local correctness by Feijen

and van Gasteren [FvG99, pg 58], where one may introduce an enforced assertion to

establish the local correctness of another assertion.

Lemma 6.46(Establish local correctness). SupposeA is a program, p∈ A.Proc, i ∈

PCp, and statement pi =̂ i: ([]u〈Bu → USu〉 ku: {? P}). If we obtain programC fromA by

replacing pi in A by i: {? wpp.pi.P} ([]u〈Bu → USu〉 ku: {?GC P}), thenA ⊑ C.

Proof. By Lemma 4.25, local correctness ofP at eachku holds if pcp = i ⇒ wpp.pi.P

holds, which is exactly the enforced assertionwpp.pi .P at pi in the new program. 2

6.2.2 Data refinement

We now describe a theorem that allows one to perform data refinement in the presence

of enforced invariants.

Theorem 6.47(Data refinement with enforced invariants). Given Assumption 6.41, if

rep is a representation program, and Q∈ P ΣC.Var is a predicate, thenA ?2P ⊑rep

C ? 2Q holds provided

A.Init; ⌊P⌋ ⊑ C.Init; ⌊Q⌋; rep (6.48)
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(∀(p,i):main(C) rep; ⌊P⌋; ap.i; ⌊P⌋ ⊑ ⌊Q⌋; cp.i; ⌊Q⌋; rep) (6.49)

(∀(p,i):new(C) rep ⊑ ⌊Q⌋; cp.i; ⌊Q⌋; rep) (6.50)

rep; ⌊¬P ∨ (∀A
pi

wpp.pi.¬P)⌋ ⊑ ⌊¬Q ∨ (∀C
pi

wpp.pi .¬Q)⌋; rep (6.51)

t.(rep; do [](p,i):stut(A)⌊P⌋; ap.i; ⌊P⌋ od) ⇒ t.(do [](p,i):stut(C) ⌊Q⌋; cp.i; ⌊Q⌋ od)

(6.52)

Proof. Using Lemma 6.43 (enforced invariant (2)), we constructA′, the program equiv-

alent toA ?2P by removing enforced invariantP; the replacingA.Init by A.Init; ⌊P⌋

and each atomic statementap.i by 〈⌊P⌋; ap.i; ⌊P⌋〉. In a similar manner, we construct

C′ equivalent toC ? 2Q, then we show thatA′ ⊑rep C′ using Definition 6.22, which due

to the transitivity of⊑ gives us our result. For eachp ∈ A′.Proc, we define

a′
p: PCp → LS

to be the function that returns the atomic labelled statement at labeli of processp in

programA′ and definec′ similarly. We now show that each of the conditions of Defini-

tion 6.22 (data refinement) are satisfied.

Initialisation:

A′.Init

⊑⊒ {definition ofA′}

A.Init; ⌊P⌋

⊑ {(6.48)}

C.Init; ⌊Q⌋; rep

⊑⊒ {definition ofC′}

C′.Init; rep

Main statements:

rep; a′
p.i

⊑⊒ {definition ofA′}

rep; ⌊P⌋; ap.i; ⌊P⌋
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⊑ {(6.49)}

⌊Q⌋; cp.i; ⌊Q⌋; rep

⊑⊒ {definition ofC′}

c′p.i; rep

New statements:

rep

⊑ {(6.50)}

⌊Q⌋; cp.i; ⌊Q⌋; rep

⊑⊒ {definition ofC′}

c′p.i; rep

Because we have assumed that every statement inA does not diverge, we strengthen the

conditions for “exit condition” and “internal divergence”so that the consequents of the

conditions are satisfied.

Exit condition: The required condition is exactly (6.51). To see this consider¬gp.(a′
p.i)

for (p, i) ∈ stmt(A′).

¬gp.(a
′
p.i)

≡ {definition ofa′
p.i}

¬gp.(⌊P⌋; ap.i; ⌊P⌋)

≡ {definition ofgp}

wpp.(⌊P⌋; ap.i; ⌊P⌋).false

≡ {definition ofwp}

P ⇒ wpp.(ap.i).(P ⇒ false)

≡ {logic}

¬P ∨ wpp.(ap.i).(¬P)

Internal convergence: Condition (6.52) implies the required condition in Definition 6.22

(data refinement). 2
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In our derivations, we often replace a single statement in a program by another (for

example replacei: skip j: in a processp with i: ⌊B⌋ j:). The lemma below allows one

to perform such a replacement. Because the guard of the replaced statement could

potentially be strengthened, the replacement could potentially hamper progress atpi,

i.e., pcp = i  pcp 6= i may no longer be valid. Regardless of whether or not

pcp = i  pcp 6= i is a property of the original program, we introducepcp = i  pcp 6= i

as an enforced property in the modified (concrete) program inorder to ensure progress

is not hampered1.

Lemma 6.53(Statement replacement). Given that Assumption 6.41 holds, ifC is ob-

tained fromA by replacing ap.i by cp.i for some(p, i) ∈ stmt(A) such that ap.i; ⌊P⌋ ⊑

cp.i; ⌊P⌋ holds, thenA ?2P ⊑ C ?(2P ∧ (pcp = i  pcp 6= i)).

Proof. Because(∀A
qj

gq.qj ⇒ tq.qj) and

(∀(q,j):stmt(C)−{(p,i)} aq.j ⊑⊒ cq.j) ∧ (ap.i; ⌊P⌋ ⊑ cp.i; ⌊P⌋)

hold, (∀C
qj

gq.qj ⇒ tq.qj), i.e.,C does not diverge. Furthermore, for all(q, j) ∈ stmt(C)

andσ, ρ ∈ Σ, (cq.j, σ)
ls

−→q (id, ρ) ⇒ (aq.j, σ)
ls

−→q (id, ρ). Let A′ =̂ A ?2P and

C′ =̂ C ?(2P ∧ (pcp = i  pcp 6= i)). We use Lemma 6.10 (trace inclusion) and show

that Tr.(C′) ⊆ Tr(A′). Take some arbitrarytr ∈ Tr.C′. We perform case analysis as

follows.

Casetr ⊢ 2(pcp 6= i). For each(q, j) ∈ stmt(C) − {(p, i)}, aq.j ⊑⊒ cq.j, and hence each

transitiontru−1 →֒A tru follows from (aq.j, tru−1)
ls

−→q (id, tru). Therefore,tr ∈ Tr.A′

and the proof follows.

Casetr ⊢ 3(pcp = i). Let u ∈ dom(tr) such that(pcp = i).tru. BecauseTr.C′ |=

23(pcp 6= i) holds, for somev > u, (pcp = i).trv−1 ∧ (pcp 6= i).trv, i.e., there exists

a transition corresponding to the execution ofcp.i, namely(cp.i, trv−1)
ls

−→p (id, trv) ∧

(⌊P⌋, trv)
us

−→ (skip, trv). Becauseap.i; ⌊P⌋ ⊑ cp.i; ⌊P⌋, tr ∈ Tr.A′ and the proof

follows. 2

1We note that in some cases introducingpcp = i  pcp 6= i in the concrete program may be too

strong. For example, in a lock-free or obstruction-free program, it is sufficient for the program as a whole

to make progress, i.e., individual processes need not make progress. However, because we do not consider

derivations of such programs in this thesis, we consider theorems for their derivation to be future work.
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It is tempting to decouple the refinements in order to prove the overall result, i.e.,

useap.i ⊑ cp.i ⇒ A ⊑ C andA ⊑ C ⇒ A ?2P ⊑ C ? 2P. However, although

A ⊑ A ?2P andC ⊑ C ?2P hold, the refinementA ?2P ⊑ C is not always valid

becauseap.i; ⌊P⌋ ⊑ cp.i may not hold.

One may also use Lemma 6.53 (statement replacement) to strengthen the guard of an

existing statement, although strengthening the guard requires new progress properties to

be enforced. If the guard is not strengthened, we may use the following lemma which

does not require any new progress properties to be introduced. For example, the lemma

may be used to refine statements with a frame, sayx, by an assignment tox.

Lemma 6.54(Statement replacement (2)). Given that Assumption 6.41 holds, ifC is ob-

tained fromA by replacing ap.i by cp.i for some(p, i) ∈ stmt(A) such that ap.i; ⌊P⌋ ⊑

cp.i; ⌊P⌋ and[ gp.(ap.i; ⌊P⌋) ≡ gp.(cp.i; ⌊P⌋) ] hold, thenA ?2P ⊑ C ? 2P.

Lemma 6.55(Initialisation replacement). If C is obtained fromA by replacingA.Init

by C.Init such thatA.Init; ⌊P⌋ ⊑ C.Init; ⌊P⌋ and [ g.(A.Init; ⌊P⌋) ≡ gp.(C.Init; ⌊P⌋) ]

hold, thenA ?2P ⊑ C ? 2P.

6.3 Frame refinement

In order to decouple introduction of new variables from statements that modify the vari-

ables, we useprogram frames[Mor94]. We may writei: x ·[[〈S〉]] j: for x ·[[i: 〈S〉 j: ]], which

helps clarify the purpose of the frame in sequential composition. When necessary, we

also writeIFB =̂ i: if 〈B → x ·[[skip]]〉 fi j: for i: x ·[[⌊B⌋]] j: to clarify thatIFB blocks on

B beforex is updated by the frame, i.e., if¬B holds,IFB does not modifyx.

Introducing a fresh variable to the frame of a program constitutes a single refinement

step. Further refinements may be performed by restricting the possible values of the

variables in the frame. For a labelled statementi: 〈S〉 j: and variablex of typeT, we use

i: x ·[[〈S〉]] j: to denote the statementi: 〈S〉 j: with a framex. Executingi: x ·[[〈S〉]] j: consists

of executingi: 〈S〉 j: atomically followed by a modification ofx to any value withinT.

The aim of such a statement is to later refinei: x ·[[〈S〉]] j: by restricting the assignment to

x, which effectively reduces non-determinism in the program.
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It is clear that a freshly introduced frame variable is not observable. Hence the ab-

stract and concrete state spaces may have different sets of variables. We define state-

mentsaddx andrem x, that add and removex from the current state space. Back and

von Wright [BvW03] present similar statements. The weakestprecondition ofaddx and

rem x have the following types where we assumex 6∈ VAR:

wp.(addx): PΣVAR∪{x} → PΣVAR

wp.(rem x): PΣVAR → PΣVAR∪{x}

where

[ wp.(addx).P ≡ (∀x:T P) ] providedx is of typeT

[ wp.(rem x).P ≡ P ] providedx is not free inP

That is wp.(addx) returns a predicate on a state space that does not containx and

wp.(rem x) returns a predicate on a state space that containsx, although this predicate is

independent ofx.

Lemma 6.56. Suppose x is a variable of type T; P is a predicate; and S is a labelled

statement. If x is not free in P and S, each of the following holds:

1. addx; x ·[[S]]; rem x ⊑⊒ S

2. x·[[S]]; rem x ⊑⊒ rem x; S

3. ⌊P⌋; rem x ⊑⊒ rem x; ⌊P⌋

4. x := T; rem x ⊑⊒ rem x

For a programA such thatx 6∈ A.Var, we definex ·[[A]] to be a program where

(x ·[[A]]).Var = A.Var ∪ {x}

(x ·[[A]]).Init = A.Init; addx; x :∈ T

(x ·[[A]]).Proc = {x ·[[p]] | p ∈ A.Proc}

(x ·[[A]]).Ov = A.Ov

Recalling thatexec(p) returns labelled statement corresponding to the body of process

p (see Section 2.4.1), we define

exec(x ·[[p]]) =̂ x ·[[exec(p)]].
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Becausex ·[[exec(p)]] is a labelled statement, the rest of the frame definition is asdefined

in Chapter 2. The following lemma allows one to introduce a new variable to the frame

of a program.

Lemma 6.57 (Extend frame). Given that Assumption 6.41 holds, if x6∈ A.Var is a

variable of type T; x is not free in P; andrep =̂ rem x, thenA ?2P ⊑rep x ·[[A]] ?2P.

Proof. We show that the conditions in Theorem 6.47 (data refinement with enforced

invariants) are satisfied.

Condition (6.48).

A.Init; ⌊P⌋ ⊑ (x ·[[A]]).Init; ⌊P⌋; rep

≡ {definitions of(x ·[[A]]).Init andrep}

A.Init; ⌊P⌋ ⊑ A.Init; addx; x :∈ T; ⌊P⌋; rem x

≡ {Lemma 6.56,x 6∈ A.Var andx nfi P}{Lemma 6.14 (reflexivity)}

true

Condition (6.49). Note that predicateP on the left and right hand sides of⊑ have differ-

ent types.

rep; ap.i; ⌊P⌋ ⊑ cp.i; ⌊P⌋; rep

≡ {definitions ofrep andcp.i}

rem x; ap.i; ⌊P⌋ ⊑ x ·[[ap.i]]; ⌊P⌋; rem x

≡ {x does not appear inP andx 6∈ A.Var}

{Lemma 6.56}

true

Condition (6.50). This is trivially true becausenew(C) = {}.

Condition (6.51). This holds becausewpp.(ap.i).(¬P) ≡ wpp.(cp.i).(¬P) andx does not

appear inP.

Condition (6.52). This holds becausex does not appear in the guard of anyap.i where

(p, i) ∈ stmt(A). 2
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Lemma 6.58(Frame reduction). Suppose Assumption 6.41 holds,(p, i) ∈ stmt(A) and

C is obtained fromA by replacing ap.i by cp.i where ap.i = i: x ·[[〈S〉]] j: and cp.i = i: 〈S〉 j:.

ThenA ⊑ C.

Proof. The proof follows directly from Lemma 6.54 (statement replacement (2)) be-

causeap.i ⊑ cp.i and[ gp.(ap.i) ≡ gp.(cp.i) ]. 2

6.4 Statement introduction

Given an existing statementi: x ·[[〈S〉]] j:, a useful refinement might be to turn the state-

ment into atomic statements:i: x ·[[〈S〉]] k: and k: x ·[[skip]] j:, so thatS and the update

to x can be executed in two atomic steps. One might also introducea statement with

a framex, i.e., replacei: x ·[[〈S〉]] j: with i: x ·[[〈S〉; k: 〈T〉]] j:, which is equivalent to state-

menti: x ·[[〈S〉]]; k: x ·[[〈T〉]] j:. However, even for simple programs, splitting the atomicity

of a statement causes problems with interference. For example, consider the following

program wherex andb are private variables ando is observable.

Init: b, o := false, 1

ProcessX

0: x ·[[b := true]]

τ :

ProcessY

0: if b →

1: x := 100;

2: o := x;

fi

τ :

The only observable trace of the program is〈{o 7→ 1}, {o 7→ 100}〉. However, if we split

X0 into statements0: x ·[[b := true]] 1: and1: x ·[[skip]] τ :, we obtain a larger set of traces

because1: x ·[[skip]] τ : may be interleaved in betweenY1 andY2, and hence splittingX0

does not result in a refinement.

Next, we present a theorem that allows one to replace statement i: x ·[[〈S〉]] j: by the

sequential statementi: 〈S〉 ; k: x :∈ T j: wherek is a fresh label. Recall that we view
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i: x ·[[〈S〉]] j: as a single atomic statement and that variablex may be global (but not observ-

able), and hence the theorem essentially facilitates splitting the atomicity ofi: x ·[[〈S〉]] j:

into two atomic statementsi: 〈S〉 k: andk: x :∈ T j:. Unlike the sequential programming

case [Mor94], due to the possibility of interference atk, it becomes difficult to split the

atomicity of i: x ·[[〈S〉]] j: and decouple modifications tox from i: 〈S〉 j:. Back and von

Wright describe the difficulties in splitting the atomicityin the context of concurrency

[Bac89b, BvW99]. Our theorem allows one to split the atomicity of a statement in the

context of programs with enforced invariants. The technique is closely related to that of

reduction[Lip75], however our presentation is more formal and more related to program

development. We first define the following assumption. We useA.PCp to denote the set

of labels of processp in A. As usualτ 6∈ A.PCp.

Assumption 6.59.SupposeA is a program that does not diverge;A does not have any

enforced invariants; x∈ A.Var; P ∈ P ΣA.Var is predicate; x is a variable of type T;

ap.i = i: x ·[[〈S1〉]] j: where(p, i) ∈ stmt(A); and x is not free in S1. Also suppose that

k 6∈ A.PCp; LS =̂ i: x ·[[〈S1〉]]; k: x ·[[skip]] j:; and programC is obtained fromA by

replacing ap.i by LS.

We let Aω denote the possibly infinite iteration of statementA. As with A∗, Aω ⊑⊒

(A⊓ id)ω holds. Furthermore, one may convert a loop into an iterativestatement using

the following equalitydo A od ⊑⊒ Aω; ⌊¬g.A⌋. The following lemma is by Back and

von Wright [BvW99, pg308].

Lemma 6.60. If S, T, U are monotonic; S is continuous; T and U are conjunctive; and

S; T ⊑ U; S then S; Tω ⊑ Uω; S.

Lemma 6.61. SupposeA andC are programs andrep is a continuous representation

program such that(∀(p,i):main(C) rep; ap.i ⊑ cp.i; rep) and(∀(p,i):stut(C) rep ⊑ cp.i; rep)

hold. If A = toAS(A) andC = toAS(C) then t.(rep; As od) ⇒ t.(Cs Od).

Proof.

t.(rep; do As od) ⇒ t.(do Cs od)

≡ {convert to iteration}

t.(rep; Aω
s ; ⌊¬g.As⌋) ⇒ t.(Cω

s ; ⌊¬g.Cs⌋)
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≡ {[ t.(S1; S2) ≡ wp.S1.(t.S2) ]}

wp.(rep; Aω
s ).(t.⌊¬g.As⌋) ⇒ wp.(Cω

s ).(t.⌊¬g.Cs⌋)

≡ {[ t.⌊P⌋ ≡ true]}

t.(rep; Aω
s ) ⇒ t.(Cω

s )

≡ {rep; Aω
s ⊑ Cω

s ; rep, see below}

t.(Cω
s ; rep) ⇒ t.(Cω

s )

≡ {by definition ofrep, t.rep ≡ true}

t.(Cω
s ) ⇒ t.(Cω

s )

≡ {logic}

true

We now showrep; Aω
s ⊑ Cω

s ; rep. By Lemma 6.33,rep; (As ⊓ id) ⊑ Cs; rep holds

by our assumption that(∀(p,i):main(C) rep; ap.i ⊑ cp.i; rep) and (∀(p,i):stut(C) rep ⊑

cp.i; rep) hold.

rep; Aω
s

⊑⊒ {Aω
s ⊑⊒ (As ⊓ id)ω}

rep; (As ⊓ id)ω

⊑ {Lemma 6.60,rep; (As ⊓ id) ⊑ Cs; rep}

Cω
s ; rep 2

Theorem 6.62(Statement introduction). Suppose assumption 6.59 holds and T is finite.

If each statement aq.l for (q, l) ∈ stmt(A) is conjunctive and

rep =̂ if pcp = k → ⌊P⌋; cp.k; ⌊P⌋ [] pcp 6= k → skip fi (6.63)

P ∧ wpp.(cp.i).(¬P) ⇒ wpp.(ap.i).(¬P) (6.64)

(∀q:A.Proc−{p}(∀l:PCq

⌊P⌋; cp.k; ⌊P⌋; cq.l; ⌊P⌋ ⊑ ⌊P⌋; cq.l; ⌊P⌋; cp.k; ⌊P⌋))

(6.65)

thenA ?2P ⊑rep C ? 2P.

Proof. We prove the result using Theorem 6.47 (data refinement with enforced invari-

ants).

Condition (6.48).
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A.Init; ⌊P⌋

⊑⊒ {A.Init = C.Init}

C.Init; ⌊P⌋

⊑ {wp.(C.Init).(pcp 6= k)}

C.Init; rep; ⌊P⌋

⊑ {rep; ⌊P⌋ ⊑ ⌊P⌋; rep}

C.Init; ⌊P⌋; rep

Condition (6.49). We are required to show that each main statement is refined by its

concrete counterpart. We first show thata.pi is refined byc.pi, then consider the other

main statements in processp, and finally the main statements in processesq 6= p.

For main statementcp.i we have the following calculation.

rep; ⌊P⌋; ap.i; ⌊P⌋ ⊑ ⌊P⌋; cp.i; ⌊P⌋; rep

≡ {Lemma 6.16 (guard),ap.i ⊑⊒ ⌊pcp = i⌋; ap.i}

{wpp.(cp.i).(pcp = k)}{Lemma 6.15 (guard strengthening)}

⌊P⌋; ap.i; ⌊P⌋ ⊑ ⌊P⌋; cp.i; ⌊pcp = k ∧ P⌋; cp.k; ⌊P⌋

⇚ {Lemma 6.15 (monotonicity)}{Lemma 6.15 (guard strengthening)}

ap.i ⊑ cp.i; ⌊pcp = k⌋; cp.k

≡ {expandcp.i}

ap.i ⊑ ⌊pcp = i⌋; S1; x :∈ T; pcp := k; ⌊pcp = k⌋; x :∈ T; pcp := j

≡ {Lemma 6.17 (absorption)}

ap.i ⊑ ⌊pcp = i⌋; S1; x :∈ T; pcp := j

≡ {definition ofap.i}{Lemma 6.14 (reflexivity)}

true

For (q, l) ∈ main(C) − {(p, i)}, we haveaq.l ⊑⊒ cq.l. We split these statements into two

cases.

Casep = q. We knowl 6= k because(p, k) ∈ new(C) andwpp.(cp.l).(pcp 6= k).

rep; ⌊P⌋; ap.l; ⌊P⌋ ⊑ ⌊P⌋; cp.l; ⌊P⌋; rep
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≡ {Lemma 6.16 (guard):ap.l ⊑⊒ ⌊pcp = l⌋; ap.l andl 6= k}

⌊P⌋; ap.l; ⌊P⌋ ⊑ ⌊P⌋; cp.l; ⌊P⌋

≡ {ap.l ⊑⊒ cp.l}{Lemma 6.14 (reflexivity)}

true

Casep 6= q. We have the following calculation:

rep; ⌊P⌋; aq.l; ⌊P⌋

⊑⊒ {aq.l ⊑⊒ cq.l}{definition ofrep}{Lemma 6.15 (distributivity)}

⌊pcp = k ∧ P⌋; cp.k; ⌊P⌋; cq.l; ⌊P⌋ ⊓ ⌊pcp 6= k⌋; cq.l; ⌊P⌋

⊑ {(6.65)}{Lemma 6.15 (commutativity)}

⌊P⌋; ⌊pcp = k⌋; cq.l; ⌊P⌋; cp.k; ⌊P⌋ ⊓ ⌊pcp 6= k⌋; cq.l; ⌊P⌋

⊑ {pcp 6= k ⇒ wpq.(cq.l).(pcp 6= k)}{pcp = k ⇒ wpq.(cq.l).(pcp = k)}

⌊P⌋; cq.l; ⌊pcp = k⌋; ⌊P⌋; cp.k; ⌊P⌋ ⊓ cq.l; ⌊pcp 6= k⌋; ⌊P⌋

⊑⊒ {Lemma 6.15 (guard strengthening and commutativity)}

⌊P⌋; cq.l; ⌊P⌋; ⌊pcp = k ∧ P⌋; cp.k; ⌊P⌋ ⊓ ⌊P⌋; cq.l; ⌊P⌋; ⌊pcp 6= k⌋

⊑ {Lemma 6.15 (distributivity)}

⌊P⌋; cq.l; ⌊P⌋; rep

Condition (6.50). There is only one new statement inC, namelycp.k.

rep ⊑ ⌊P⌋; cp.k; ⌊P⌋; rep

⇚ {cp.k ⊑⊒ ⌊pcp = k⌋; cp.k}{wpp.(cp.k).(pcp 6= k)}

rep ⊑ ⌊P ∧ pcp = k⌋; cp.k; ⌊P⌋

⇚ {Lemma 6.15 (reduce non-determinism)}

true

Condition (6.51). We define

AE =̂ P ⇒ (∀A
pi

wpp.pi .(¬P))

CE =̂ P ⇒ (∀C
pi

wpp.pi.(¬P)).
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P ∧ CE

⇛ {definition ofCE}{split the universal quantifier}

P ∧ (∀(p,i):main(C) wpp.(cp.i).(¬P)) ∧ (∀(p,i):new(C) wpp.(cp.i).(¬P))

⇛ {logic}{new(C) = {(p, k)}}

P ∧ wpp.(cp.k).(¬P)

We also have:

pcp 6= k ∧ CE⇒ pcp 6= k ∧ AE

≡ {definitions ofCE andAE}{logic}

pcp 6= k ∧ P ∧ (∀C
pi

wpp.pi .(¬P)) ⇒ pcp 6= k ∧ (∀A
pi

wpp.pi.(¬P))

⇚ {aq.l ⊑⊒ cq.l for all (q, l) ∈ stmt(C) − {(p, i), (p, k)}}

pcp 6= k ∧ P ∧ wpp.(c.pi).(¬P) ∧ wpp.(c.pk).(¬P) ⇒

pcp 6= k ∧ wpp.(a.pi).(¬P)

≡ {usepcp 6= k}

pcp 6= k ∧ P ∧ wpp.(c.pi).(¬P) ⇒ pcp 6= k ∧ wpp.(a.pi).(¬P)

Thus, we have the following calculation

rep; ⌊AE⌋ ⊑ ⌊CE⌋; rep

⇚ {definition ofrep}{Lemma 6.15 (distributivity)}

(⌊pcp = k ∧ P⌋; cp.k; ⌊P⌋; ⌊AE⌋) ⊓ (⌊pcp 6= k⌋; ⌊AE⌋) ⊑

(⌊CE⌋; ⌊pcp = k ∧ P⌋; cp.k; ⌊P⌋) ⊓ (⌊CE⌋; ⌊pcp 6= k⌋)

⇚ {Lemma 6.15 (monotonicity)}

{Lemma 6.15 (guard strengthening), second calculation above and (6.64)}

⌊P⌋; cp.k; ⌊AE⌋ ⊑ ⌊CE⌋; ⌊P⌋; cp.k

⇚ {Lemma 6.16}

⌊P⌋; ⌊wpp.(cp.k).AE⌋; cp.k ⊑ ⌊CE⌋; ⌊P⌋; cp.k

⇚ {first calculation above}

⌊P⌋; ⌊wpp.(cp.k).AE⌋ ⊑ ⌊P ∧ wpp.(cp.k).(¬P)⌋

⇚ {Lemma 6.15 (monotonicity)}{Lemma 6.15 (guard strengthening)}

wpp.(cp.k).(¬P) ⇒ wpp.(cp.k).AE
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⇚ {wp is monotonic}

true

Condition (6.52). We may prove this using Lemma 6.61. We showrep is continuous

using the results of Back and von Wright [BW98, pp368-371], namely, ifS1 andS2 are

continuous, then(⌊P⌋; S1 ⊓ ⌊¬P⌋; S2) and(S1; S2) are continuous. IfT is finite, then

x :∈ T is continuous.

Application of this theorem directly is expensive due to (6.65), which essentially

shows that the new statementc.pk commutes with the main statements in all other pro-

cesses. However, by constructing the program in a specific order, this proof can largely

be avoided, that is new statements can be introduced as at a much smaller cost. Some

techniques for avoiding a full proof of (6.65) are describedbelow.

We state the following corollaries that allow one to introduce an assignment state-

ment more directly. An expression is assignment compatiblewith a variable if they are

of the same type.

Corollary 6.66 (Assignment introduction). Suppose the assumptions of Theorem 6.62

hold, but where LŜ= i: 〈S1〉 ; k: x := E j: for an expression E that is assignment com-

patible with x, thenA ?2P ⊑rep C ?2P.

Note that we only allow the new statementcp.k to modify variables that appear in the

frame ofcp.i. This is to disallow modifications that could endanger assertions in process

p that have already been established, and hence are no longer enforced.

It is tempting to try and generalise Theorem 6.62 so that a guarded statement is

introduced directly. However, such a statement introducescomplications with progress

and we have found the proof of a more general theorem does not work. Furthermore, the

required commutativity property (6.65) becomes difficult to prove in practice. Equation

(6.63) describes the construction ofrep, while (6.65) represents a proof obligation that is

potentially difficult to prove. Using Lemma 6.20, we may simplify the proof as follows.
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Lemma 6.67.Suppose P is a predicate; p and q are processes such that p6= q; k ∈ PCp

is a label; pk =̂ k: 〈US〉 j:; and l ∈ PCq is a label. If pk; ql ⊑ ql ; pk and

(¬(pcp = j ∧ P)) ⇒ wpq.ql .(¬(pcp = j ∧ P)) (6.68)

then pk; ⌊P⌋; ql ; ⌊P⌋ ⊑ ql ; ⌊P⌋; pk; ⌊P⌋ holds.

Proof.

pk; ⌊P⌋; ql; ⌊P⌋

⊑⊒ {wpp.pk.(pcp = j)}{Lemma 6.15 (commutativity)}

pk; ⌊pcp = j ∧ P⌋; ql ; ⌊P⌋

⊑ {(6.68)}{Lemma 6.20}

pk; ql ; ⌊pcp = j ∧ P⌋; ⌊P⌋

⊑ {assumption}{Lemma 6.15 (guard strengthening)}

ql ; pk; ⌊pcp = j ∧ P⌋

⊑ {Lemma 6.15 (guard strengthening)}{wpp.pk.(pcp = j)}

ql ; ⌊P⌋; pk; ⌊P⌋ 2

Lemma 6.69.Suppose P is a predicate; p and q are processes such that p6= q; k ∈ PCp

is a label; pk =̂ k: 〈US〉 j:; and l ∈ PCq is a label. If pk; ql ⊑ ql ; pk and

pcq = l ∧ P ⇒ wpp.pk.(pcq = l ∧ P) (6.70)

then⌊P⌋; pk; ⌊P⌋; ql ⊑ ⌊P⌋; ql ; ⌊P⌋; pk holds.

Proof.

⌊P⌋; pk; ⌊P⌋; ql

⊑⊒ {ql ⊑⊒ ⌊pcq = l⌋; ql}{Lemma 6.15 (commutativity)}

⌊P⌋; pk; ⌊pcq = l ∧ P⌋; ql

⊑ {(6.70)}{Lemma 6.20}

⌊P⌋; ⌊pcq = l ∧ P⌋; pk; ql

⊑ {assumption:pk; ql ⊑ ql ; pk }{Lemma 6.15 (guard strengthening)}

⌊pcq = l ∧ P⌋; ql ; pk

⊑ {Lemma 6.15 (guard strengthening)}{ql ⊑⊒ ⌊pcq = l⌋; ql}

⌊P⌋; ql ; ⌊P⌋; pk 2
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Lemmas 6.67 and 6.69 show that the proof of (6.65) is simplified if pk; ql ⊑ ql; pk

holds. The following lemma allows one to discharge such proof obligations. Parts 1, 2

and 4 of the lemma suggest that one should keep a variable within a frame for as long as

possible.

Lemma 6.71(Statement commutativity). For any conjunctive statement S and variable

x of type T, each of the following hold:

1. x·[[skip]]; x ·[[S]] ⊑ x ·[[S]]; x ·[[skip]]

2. x·[[skip]]; S⊑⊒ S; x ·[[skip]], provided x does not occur in S

3. x := true; ⌊x⌋ ⊑ ⌊x⌋; x := true

4. x := E; x ·[[skip]] ⊑ x ·[[skip]]; x := E, provided E is assignment compatible with

x

Proof (1).

x ·[[skip]]; x ·[[S]] ⊑ x ·[[S]]; x ·[[skip]]

≡ {definition of frame}

x :∈ T; S; x :∈ T ⊑ S; x :∈ T; x :∈ T

⇚ {x :∈ T ⊑ skip}{Lemma 6.17 (absorption)}

S; x :∈ T ⊑ S; x :∈ T

⇚ {Lemma 6.14 (reflexivity)}

true

Proof (2).

wp.(x ·[[skip]]; S).R

≡ {wp and frame definitions}

wp.(x :∈ T).(wp.S.R)

≡ {wp definition}

(∀x:T wp.S.R)

≡ {logic}
∧

v:T (x := v).(wp.S.R)

≡ {x does not occur inS}
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∧
v:T wp.S.((x := v).R)

≡ {wp.S is conjunctive}

wp.S.(
∧

v:T (x := v).R)

≡ {logic}{wpand frame definitions}

wp.(S; x ·[[skip]]).R)

Proof (3,4). These follow via trivialwp calculations. 2

Lemma 6.72. For a predicate P and statements S and T, P⇒ (S ⊑ T) holds iff

⌊P⌋; S⊑ ⌊P⌋; T holds.

Proof.

⌊P⌋; S⊑ ⌊P⌋; T

≡ {definition of⊑}

(∀R (P ⇒ wp.S.R) ⇒ (P ⇒ wp.T.R))

≡ (∀R P ⇒ (wp.S.R⇒ wp.T.R))

≡ P ⇒ (∀R wp.S.R⇒ wp.T.R)

≡ P ⇒ (S⊑ T) 2

6.5 Conclusion and related work

The techniques of Feijen and van Gasteren [FvG99] and Dongoland Mooij [DM06,

DM08] do not describe a relationship between the initial andfinal programs. Correct-

ness of the final program is judged on the basis that it satisfies the same safety and

progress properties as the initial specification. The notion of observable behaviour is

not addressed and therefore no formal rules that prevent onefrom modifying observable

variables. Hence one cannot claim that a derived program is arefinement of the original

specification.

Abadi and Lamport describe the concept of refinement mappings, which relate the

abstract and concrete state spaces [AL91]. Gardiner and Morgan describe refinement

rules for sequential programs [GM93] and Back and von Wrightgive refinement rules

for action systems (which may be used to model sequential andconcurrent programs)



168 PROGRAM REFINEMENT

[Bac93, BvW94, BvW99]. Furthermore, the rules are such thatany observable be-

haviour of the final program is an observable behaviour of theoriginal.

We have formalised queried properties as enforced properties, and presented formal

rules for the derivation of programs that ensure refinement.Yet, our techniques facilitate

the aphorism of Feijen and van Gasteren [FvG99], where a program’s code is finalised

only when all required properties are satisfied. Enforced properties and frame statements

provide a nice interplay where the frame variable allows a wider range of (unobservable)

behaviours, while the enforced properties restrict the behaviours so that the traces satisfy

the required properties.

In techniques such as the B method and action systems, introduction of new vari-

ables are tightly coupled with the operations and invariants that refer to the variable,

and hence all operations and invariants that use a new variable must be introduced at

the same time. As a result, each refinement step can become complex and thus diffi-

cult to prove [ACM05]. Lamport presents the TLA framework which is used to specify

systems [Lam02]. Rules for the refinement of specifications are provided, together with

techniques for integration with the TLC model checker. Bothsafety and liveness prop-

erties are considered. However, refinement of liveness properties is generally ignored.

Furthermore, because both programs and program propertiesare expressed by a logical

formula, expressions tend to get long and complicated.

Application of Theorem 6.47 is potentially difficult because rep can become compli-

cated, much like action systems, Event-B, and TLA. Application of Theorem 6.62 can

potentially generate a large number of proof obligations, however, this is also true in

methods such as action systems [Bac89b] where statements from the different processes

are combined to form a single non-deterministic loop. Our derivations avoid Theorems

6.47 and 6.62 so thatrep need not be defined explicitly, and the required commutativity

proof, i.e., condition (6.65) in 6.62, is trivialised. To this end, we aim to use Lemmas

6.67, 6.69 and 6.71 as much as possible.

Simplification of the refinement steps is mainly achieved by exploiting both frames

and enforced properties, which may be manipulated independently of each other. That

is, we achieve a decoupling between variables and operations that modify the variables,
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allowing refinement via a series of small steps. In Chapter 7 we present example uses of

the theory developed in this chapter.

Although we have presented enforced properties and programframes in the context

of the programming model in Chapter 2, the concepts of enforced properties and pro-

gram frames can be extended to other existing frameworks such as the B-method, action

systems, TLA, etc. We leave exploration of how enforced properties and program frames

may be incorporated into these methods as a topic for future investigation.
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7
Example Derivations

One way to reveal the crux of an algorithm is to formally derive it from its specification.

In this way, the key underlying mechanisms of the algorithm are exposed, because each

change in the program under construction is carefully motivated by the properties that

still need to be established.

In this chapter, we use the techniques from Chapters 4 and 6 toderive a number of

standard concurrent programs. The chapter is structured asfollows. In Section 7.1, we

derive the initialisation protocol. Then we tackle the problem of mutual exclusion. In

Section 7.2 we present the safe sluice algorithm, which provides the common start to the

derivations of Peterson’s algorithm (Section 7.3) and Dekker’s algorithm (Section 7.4).

We assume weak fairness for the mutual exclusion algorithmsbut only minimal progress

for the initialisation protocol.

171
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Contributions. This chapter is based on work done in collaboration with Arjan Mooij

[DM06, DM08], however, the derivations incorporate newer techniques that have since

been developed. The initialisation protocol and Peterson’s algorithm are from [DM06],

but the progress-based modifications are motivated by newerlemmas such as Lemma

4.65 (deadlock preventing progress) and Lemma 4.78 (base progress) from [DM08]. Al-

though the progress-based motivations in [DM06, DM08] are formal, the modifications

themselves are informal and a relationship between the initial specification and final pro-

gram is missing. In fact, it is possible to derive an incorrect program, then claim that the

derived program implements the original specification oncethe incorrect program is cor-

rected. The derivations in this chapter not only motivate safety and progress in a formal

manner, but also use the theory from Chapter 6 to justify eachprogram modification.

This ensures that the final program is an implementation of the initial specification.

7.1 Initialisation protocol

As a first example, we consider the initialisation protocol for two processes [Mis91].

The protocol ensures that both processes have executed their initialisation code before

the rest of the program is executed.

7.1.1 Specification

The specification of the protocol is formalised by the program in Fig. 7.1. Statement

X.init denotes the contribution of processX to the initialisation of the system. We use

the following sets which enable us to refer to the control points withinX.init andY.init

more easily:

IPCX =̂ labels(0: X.init)

IPCY =̂ labels(0: Y.init).

We are heading for a symmetric solution, and hence focus our discussions on processX

only. We assume thatX.init terminates and does not block, i.e.,

IAX =̂ pcX ∈ IPCX  pcX 6∈ IPCX.
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We follow the convention of placing additional program requirements below the program

code. Because we develop symmetric processesX andY, we only show the safety and

liveness properties forX. In order to distinguish properties of the program from those

with a symmetric equivalent, we usePX to indicate thatP is a property of processX. That

is, every propertyPX has a symmetric equivalentPY. A property without a subscript is a

property of the whole program.

Init: pcX = 0 ∧ pcY = 0

ProcessX

0: X.init;

1: skip

τ : {? pcY 6∈ IPCY}

ProcessY

0: Y.init;

1: skip

τ : {? pcX 6∈ IPCX}

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

LiveX: (∀i:PCX pcX = i  pcX 6= i)

FIGURE 7.1: Initialisation protocol specification

The safety property for processX is that processY is not executingY.init when X

has reachedτ , i.e., if pcX = τ holds, thenpcY 6∈ IPCY must hold. Due to the possible

interleavings of statements withinX.init andY.init, the code as given does not guarantee

this property. Hence weenforcethis property by placing the queried assertionpcY 6∈

IPCY at Xτ . The enforced assertion only allows executions in whichpcY 6∈ IPCY holds

when processX reachesτ . That is, when ignoring the enforced assertion, although the

program in Fig. 7.1 may have traces such thatpcX = τ andpcY ∈ IPCY hold, such traces

are discarded by the enforced assertion. The progress requirement is that each process

satisfies individual progress, which is formalised by the predicateLiveX.

Note that without theskip statements atX1 andY1, due to the enforced assertions,

the set of traces of the program would be empty. We discuss theimplications of deriving

a program without theskip in Section 7.1.3.
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7.1.2 Derivation

Our derivation method starts from an enforced property and attempts to add code to

ensure the program establishes the property. As part of a step one may need to introduce

new enforced properties that guarantee that the new code will establish the properties.

The aim being that the new properties should be “easier” to establish than the existing

properties, and eventually we remove all enforced properties.

Correctness ofpcY 6∈ IPCY at Xτ . BecausepcY cannot be accessed or modified by

processX, the only way in which local correctness may be established is by introducing

new variables to the program. Using Lemma 6.57 (extend frame), we introduce fresh

private variablesbX andbY of type Boolean, along with enforced invariants describing

their purpose. The invariant forbY is

2(pcX = τ ∧ bY ⇒ pcY 6∈ IPCY). (7.1)

The enforced assertionpcY 6∈ IPCY atXτ is equivalent to the enforced invariant2(pcX =

τ ⇒ pcY 6∈ IPCY), and hence this holds if (7.1) and2(pcX = τ ⇒ bY) both hold. An

additional constraint on the initialisation protocol (as originally specified in [Mis91]) is

that the program may not modify newly introduced variablesbX andbY beforeX.init and

Y.init, and hence we use Lemma 6.58 (frame reduction) to removebX andbY from the

frame ofInit, X.init andY.init. The refined program follows.

Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: bX, bY ·[[skip]]

τ : {? bY}

ProcessY

0: Y.init ;

1: bX, bY ·[[skip]]

τ : {? bX}

?(7.1)X: 2(pcX = τ ∧ bY ⇒ pcY 6∈ IPCY)

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

LiveX: (∀i:PCX pcX = i  pcX 6= i)
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Local correctness ofbY at Xτ . This may be established via assignmentbY := true

beforeXτ , however, such an assignment will make it difficult to establish correctness of

(7.1)Y. Instead, we aim to establish local correctness via synchronisation statement⌊bY⌋

immediately beforeXτ .

One alternative is to use Lemma 6.53 (statement replacement) to replace theskip

at X1 by ⌊bY⌋. However because we have removedbX andbY from the frame ofX.init,

such a modification makes it impossible to modifybX or bY beforeX1. Hence we use

Theorem 6.62 (statement introduction) to introduce2: bX ·[[skip]] just afterX1 instead.

We leavebX in the frame ofX2 in order to allowbX to be modified afterX2. Because this

is our first application of Theorem 6.62 (statement introduction), we describe the proofs

of (6.64) and (6.65) in detail, i.e., we must prove

P ∧ wpX.(cX.1).(¬P) ⇒ wpX.(aX.1).(¬P)

(∀l:PCY⌊P⌋; X2; ⌊P⌋; Yl ; ⌊P⌋ ⊑ ⌊P⌋; Yl ; ⌊P⌋; X2; ⌊P⌋)

where

P ≡ (pcX = τ ⇒ bY ∧ pcY 6∈ IPCY) ∧ (pcY = τ ⇒ bX ∧ pcX 6∈ IPCX)

is the conjunction of all enforced invariants in the program. We have

¬P ≡ (pcX = τ ∧ (¬bY ∨ pcy ∈ IPCY)) ∨ (pcY = τ ∧ (¬bX ∨ pcX ∈ IPCx))

and we show that (6.64) holds as follows.

P ∧ wpX.(cX.1).(¬P) ⇒ wpX.(aX.1).(¬P)

≡ {wpX.(cX.1).(pcX = 2)}

P ∧ (pcX = 1 ⇒ (∀bX,bY (pcY = τ ∧ ¬bX))) ∧ pcX = 1 ⇒ wpX.(aX.1).(¬P)

≡ false⇒ wpX.(aX.1).(¬P)

≡ true

We now prove (6.65) using repeated applications of Lemma 6.69. For eachl ∈ PCY,

the refinementX2; Yl ⊑ Yl ; X2 holds trivially by Lemma 6.71 (statement commu-

tativity). By Lemma 6.72 we may equivalently showP ⇒ (X2; ⌊P⌋; Yl ; ⌊P⌋ ⊑

Yl ; ⌊P⌋; X2; ⌊P⌋).
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Casesl ∈ IPCY. We prove the consequentX2; ⌊P⌋; Yl ; ⌊P⌋ ⊑ Yl ; ⌊P⌋; X2; ⌊P⌋ using

Lemma 6.67, where¬(pcX = τ ∧ P) ≡ pcX 6= τ ∨ ¬bY ∨ pcY ∈ IPCY.

• If wpY.Yl .(pcY ∈ IPCY) holds, we have

P ⇒ (¬(pcX = τ ∧ P) ⇒ wpY.Yl .(¬(pcX = τ ∧ P)))

≡ true

• If wpY.Yl .(pcY 6∈ IPCY) holds, we have:

P ⇒ (¬(pcX = τ ∧ P) ⇒ wpY.Yl .(¬(pcX = τ ∧ P)))

≡ P ⇒ (pcY = l ⇒ pcX 6= τ ∨ ¬bY)

≡ P ⇒ (pcX = τ ⇒ (bY ⇒ pcY 6= l))

≡ true

Casel = 1. We havepcY = l ∧ P ≡ trueand hence the refinement⌊P⌋; X2; ⌊P⌋; Yl ⊑

⌊P⌋; X2; ⌊P⌋; Yl holds trivially using Lemma 6.69 using the fact thatpcY = l ∧ P ⇒

wpX.X2.(pcY = l ∧ P) holds.

Casel = τ . We havepcY = l ∧ P ≡ bX ∧ pcX ∈ IPCX and

pcY = l ∧ P ⇒ wpX.X2.(pcY = l ∧ P)

≡ bX ∧ pcX ∈ IPCX ∧ pcX = 2 ⇒ (∀bX bX ∧ pcX ∈ IPCX)

≡ false⇒ false

≡ true

Hence the proof of⌊P⌋; X2; ⌊P⌋; Yl ⊑ ⌊P⌋; X2; ⌊P⌋; Yl follows by Lemma 6.69.

We then use Lemma 6.53 (statement replacement) to replaceX2 by blocking state-

ment 〈if bY → bX ·[[skip]] fi〉. Lemma 6.53 requires that we introduce the following

enforced progress property:

pcX = 2 pcX 6= 2. (7.2)
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Correctness of(7.2)X. Because we have only assumed minimal progress (as opposed

to weak fairness), we prove(7.2)X using Lemma 4.65 (binary induction). We use a well-

founded relation(≺, PCτ
Y) that corresponds to the reverse execution order of process

Y. Because we expectY to terminate, the base of(≺, PCτ
Y) should be labelτ , i.e.,

the relation(≺, PCτ
Y) satisfies(∀k:IPCY τ ≺ 2 ≺ 1 ≺ k). Due toIAY (which ensures

pcY = j  pcY ≺ j for eachj ∈ IPCY), this results in the following proof obligation

(∀j:PCτ

Y−IPCY [ I ∧ pcX = 2 ∧ pcY = j ⇒

(gY.Yj ⇒ wpY.Yj .(pcY ≺ j)) ∧ (bY ∨ gY.Yj) ])

(7.3)

which may be proved by case analysis on all possible values ofj. Recall thatI is an

invariant of the program. We leaveI in (7.3) so that the proof obligations obtained

during the case analysis make sense. IfI was not present in (7.3), then we would obtain

proof obligation[ pcX = 2 ∧ pcY = τ ⇒ bY ], which is equivalent tofalse(it is not true

that in all statespcX = 2 ∧ pcY = τ ⇒ bY holds).

Case j= τ . Becauseτ is the base of(≺, PCτ
Y) andpcY = τ ⇒ ¬gY.Yτ holds, we obtain

proof obligation[ I ∧ pcX = 2 ∧ pcY = τ ⇒ bY ], which we satisfy by strengthening

the annotation and introducing enforced assertionbY at Yτ (enforced assertionbY at X2

negates the purpose of blocking atX2). This is justified because assertionbY at Yτ is

equivalent to2(pcY = τ ⇒ bY).

Case j= 2. Because[ pcY = 2 ⇒ wpY.Y2.(pcY ≺ 2) ] holds, (7.3) is satisfied for this

case by introducing the following enforced invariant:

2(pcX = 2 ∧ pcY = 2 ⇒ bY ∨ bX). (7.4)

Case j= 1. Because[ pcY = 1 ⇒ gY.Y1 ] and [ pcY = 1 ⇒ wpY.Y1.(pcY ≺ 1) ] hold,

this case is trivially satisfied. Thus, we obtain the following program. Note that we have

already proved local correctness ofbY at Xτ , however,bY may be falsified by processY,

and hence we obtain?GC bY at Xτ .
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Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: bY, bX ·[[skip]] ;

2: 〈if bY → bX ·[[skip]] fi〉

τ : {?GC bY}{? bX}

ProcessY

0: Y.init;

1: bX, bY ·[[skip]] ;

2: 〈if bX → bY ·[[skip]] fi〉

τ : {?GC bX}{? bY}

?(7.1)X: 2(pcX = τ ∧ bY ⇒ pcY 6∈ IPCY)

?(7.4): 2(pcX = 2 ∧ pcY = 2 ⇒ bY ∨ bX)

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

LiveX: (∀i:PCX
pcX = i  pcX 6= i)

Correctness ofbX at Xτ . This may be established via assignment3: bX := true that

immediately precedesXτ . We use Corollary 6.66 (assignment introduction) to introduce

assignment3: bX := true. The required proof obligations are straightforward to prove

using Lemmas 6.67 and 6.69.

Global correctness ofbX at Xτ is endangered by statementY1. Hence we use Lem-

ma 6.39 (property strengthening) to replace(7.1)X by the stronger

2(pcX = τ ∧ bY ⇒ pcY 6∈ IPCY ∪ {1}). (7.5)

Correctness of(7.4). This may be proved by ensuring that both statements preceding

X2 andY2 establish (7.4), however, a statement that establishesbY immediately beforeX2

negates the purpose of the guard ofX2. Instead, we facilitate introduction ofbX := true

by using Corollary 6.66 (assignment introduction) to introduce4: bX := true immedi-

ately beforeX2. The required proof obligations may be discharged in a straightforward

manner.

Global correctness ofbY at Xτ . This is trivial becausebY is only ever set totrue by

processY.
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Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: bY ·[[skip]] ;

4: bX := true ;

2: 〈if bY → skip fi〉 ;

3: bX := true

τ : {bY}{bX}

ProcessY

0: Y.init;

1: bX ·[[skip]] ;

4: bY := true ;

2: 〈if bX → skip fi〉 ;

3: bY := true

τ : {bX}{bY}

?(7.5)X: 2(pcX = τ ∧ bY ⇒ pcY 6∈ IPCY ∪ {1})

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

LiveX: (∀i:PCX pcX = i  pcX 6= i)

(7.4): 2(pcX = 2 ∧ pcY = 2 ⇒ bY ∨ bX)

Correctness of(7.5)X. This assertion may be falsified by execution ofX3, thus we

perform the followingwp calculation.

(7.5)X ⇒ wpX.X3.(7.5)X

≡ pcX = 3 ⇒ (bY ⇒ pcY 6∈ IPCY ∪ {1})

≡ pcX = 3 ∧ bY ⇒ pcY 6∈ IPCY ∪ {1}

This suggests that we strengthen(7.5)X to

2(pcX ∈ {3, τ} ∧ bY ⇒ pcY 6∈ IPCY ∪ {1}).

However, this invariant may be falsified byX2. A secondwp calculation results in the

following requirement

2(pcX ∈ {2, 3, τ} ∧ bY ⇒ pcY 6∈ IPCY ∪ {1}).

Repeating this process once more forX4 results in

2(pcX ∈ {4, 2, 3, τ} ∧ bY ⇒ pcY 6∈ IPCY ∪ {1}). (7.6)

It is now possible to establish(7.6)X in processX by falsifying the antecedent when

pcX = 4 is established, which is achieved via assignmentbY := false. Thus, we use

Lemma 6.54 (statement replacement (2)) to replaceX1 by statement1: bY := false. Thus,

we obtain the final program in Fig. 7.2.
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Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: bY := false;

4: bX := true ;

2: 〈if bY → skip fi〉

3: bX := true ;

τ : {bY}{bX}

ProcessY

0: Y.init ;

1: bX := false;

4: bY := true ;

2: 〈if bX → skip fi〉

3: bY := true ;

τ : {bX}{bY}

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

LiveX: (∀i:PCX
pcX = i  pcX 6= i)

(7.4): 2(pcX = 2 ∧ pcY = 2 ⇒ bY ∨ bX)

(7.6)X: 2(pcX ∈ {4, 2, 3, τ} ∧ bY ⇒ pcY 6∈ IPCY ∪ {1})

FIGURE 7.2: Initialisation protocol

7.1.3 Discussion and related work

Feijen and van Gasteren [FvG99] present a derivation that first emphasises safety, and

afterwards progress is argued in an ad-hoc manner. The alternative design by Dongol

and Goldson [DG06] addresses progress formally, but the derivation is less structured,

and program changes are not well motivated. Yet another derivation of the protocol is

provided Dongol and Mooij [DM06] where the progress-based changes are motivated by

the weakest immediate progress predicate transformer. Although formal, the derivation

in [DG06] consists of a number of low-level calculations. Wehave derived the pro-

gram using the newer techniques from [DM08] (see Chapter 4) which makes proofs of

progress more manageable. We have further improved on the derivations by relating the

initial specification to each derived program during the derivation via refinement. This

allows us to conclude that any behaviour of the derived program is a possible behaviour

of the initial specification. The derivation techniques of Feijen and van Gasteren and

Dongol and Mooij allow arbitrary changes that could potentially falsify an assertion that

has already been proved correct.

In order to demonstrate the sorts of derivations in [FvG99, DM06, DM08] that are
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disallowed by our newer techniques in Chapter 6, we present aspecification of the ini-

tialisation protocol that cannot be refined. We note that thecode the initial program in

[FvG99, DG06, DM06] but with the addition of enforced properties.

Suppose that the initial specification is given below, whereIPCX and IPCY are the

sets described in Section 7.1.1. Due to the enforced properties, the set of traces of the

program is empty. The statements within processX.init that establishpcX = τ are

blocked becauseY is executingY.init (and vice-versa); and hence the program suffers

from total deadlock. Meanwhile, because enforced assertion LiveX specifies that no

total deadlock exists, the program contains no traces, and hence cannot be refined. We

describe how the erroneous specification is discovered by our proof.

Init: pcX, pcY := 0, 0

ProcessX

0: X.init

τ : {? pcY 6∈ IPCY}

ProcessY

0: Y.init

τ : {? pcX 6∈ IPCX}

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

?LiveX: (∀i:PCX
pcX = i  pcX 6= i)

In order to satisfy the queried properties, we will be required to introduce a synchro-

nisation statement just beforeXτ . The only way to achieve this is to use Theorem 6.62

(statement introduction), however, even introduction of1: skip to obtain the program

below is problematic.

Init: pcX, pcY := 0, 0

ProcessX

0: X.init ;

1: skip

τ : {? pcY 6∈ IPCY}

ProcessY

0: Y.init

τ : {? pcX 6∈ IPCX}

IAX: pcX ∈ IPCX  pcX 6∈ IPCX

?LiveX: (∀i:PCX
pcX = i  pcX 6= i)

The conjunction of all enforced properties is

P ≡ (pcX = τ ⇒ pcY 6∈ IPCY) ∧ (pcY = τ ⇒ pcX 6∈ IPCX).
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We consider statementYj such thatj ∈ IPCY ∧ wpY.Yj .(pcY = τ) (i.e., the last statement

in init.Y). We have the following calculation for (6.68).

¬(pcX = τ ∧ P) ⇒ wpY.Yj .(¬(pcX = τ ∧ P))

≡ {wp calculation}

¬(pcX = τ ∧ pcY 6∈ IPCY) ∧ pcY = j ⇒ (pcY := τ).(pcX 6= τ ∨ pcY ∈ IPCY)

≡ {X1 is conjunctive}

pcY = j ⇒ pcX 6= τ

For (6.70), we obtain the following calculation.

(pcY = j ∧ P) ⇒ wpX.X1.(pcY = j ∧ P)

≡ {wp calculation}

pcY = j ∧ pcX 6= τ ∧ pcX = 1 ⇒ (pcX := τ).(pcY = j ∧ pcX 6= τ)

≡ {logic}

pcY = j ∧ pcX = 1 ⇒ false

≡ {logic}

pcY = j ⇒ pcX 6= 1

These calculations indicate that control of processX cannot be before or afterX1

when processY is about to execute the last statement of init.Y. Thus,pcX ∈ IPCX must

hold. However, the last statement in init.Y is blocked precisely becausepcX ∈ IPCX

holds.

7.2 The safe sluice algorithm

Our next few examples address the core problem of mutual exclusion between two pro-

cesses. We first present the derivation of the safe sluice algorithm [FvG99], which ad-

dresses mutual exclusion without providing any progress guarantees; in fact, the algo-

rithm is known to suffer from total deadlock. Its derivationforms the common start to

Sections 7.3 and 7.4 where algorithms that guarantee individual progress are derived.
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7.2.1 Specification

The specification of the problem is given in Fig. 7.3. Once again, the solution we are

heading for is symmetric, and hence we focus our discussion on processX only. We use

statementsX.ncs andX.cs to represent the non-critical and critical sections of processX,

respectively. In order to reason about the control points ofX.cs andX.ncs more easily,

we define sets:

NX =̂ labels(0: X.ncs)

CX =̂ labels(1: X.cs) − {1}.

We assume that execution ofX.cs eventually completes, i.e., we assume that the follow-

ing holds:

CAX =̂ pcX ∈ DX  pcX 6∈ DX.

where

DX =̂ CX ∪ {1}.

This property is not guaranteed for the non-critical section, however, we assume that

each atomic statement inX.ncs terminates, i.e.,

TAX =̂ (∀i:NX 2(pcX = i ⇒ tX.Xi)).

Notice that this does not excludeX.ncs from blocking forever, including at the start of its

execution, or from containing a non-atomic, non-terminating loop.

The safety requirement is that the critical sections are mutually exclusive as ex-

pressed bySafein Fig. 7.3, which is equivalent to2(¬(pcX ∈ CX ∧ pcY ∈ CY)).

The progress requirement for processX is that it makes individual progress provided

pcX 6∈ NX, which is expressed by propertyLiveX.

7.2.2 Derivation

BecausepcX andpcY may not be explicitly modified by any program statement, we aim

to establishSafeby introducing fresh private variables to the program. We use Lem-

ma 6.57 (extend frame) to introduce variablesbX, bY of type Boolean together with the
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Init: pcX, pcY := 0, 0

ProcessX

∗[

0: X.ncs;

1: X.cs

]

ProcessY

∗[

0: Y.ncs;

1: Y.cs

]

?Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

FIGURE 7.3: Specification for two-process mutual exclusion

enforced invariant

2(pcX ∈ CX ∧ bY ⇒ pcY 6∈ CY) (7.7)

which is equivalent to2(bY ⇒ pcX 6∈ CX ∨ pcY 6∈ CY). Due to(7.7)X and its symmetric

equivalent,Safeholds if the following does:

2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY) (7.8)

together with the symmetric condition in processY. Thus, we obtain the following

program.

Init: bX, bY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: bX, bY ·[[X.ncs]] ;

1: bX, bY ·[[X.cs]]

]

ProcessY

∗[

0: bX, bY ·[[Y.ncs]] ;

1: bX, bY ·[[Y.cs]]

]

?(7.7)X: 2(pcX ∈ CX ∧ bY ⇒ pcY 6∈ CY)

?(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)
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The proofs below are simplified if we removebX andbY from the frames ofX.ncs and

X.cs. However, becausebX andbY will need to be modified after bothX.ncs andX.cs, we

first use Theorem 6.62 (statement introduction) to introduce statements2: bX, bY ·[[skip]]

and3: bX, bY ·[[skip]] immediately afterX.ncs andX.cs, respectively. Then using Lem-

ma 6.58 (frame reduction), we remove bothbX andbY from the frames ofX.ncs andX.cs.

Thus the code for processX becomes:

ProcessX =̂ ∗[

0: X.ncs;

2: bX, bY ·[[skip]] ;

1: X.cs;

3: bX, bY ·[[skip]]

]

Correctness of(7.7)X. Using Lemma 4.18 (invariant), we must verify correctness of

(7.7)X against statements that may establishpcX ∈ CX or bY, and those that may falsify

pcY 6∈ CY. Statements inX that may establishbY falsify pcX ∈ CX, and hence may

trivially be discharged. For statements,Xi, that may establishpcX ∈ CX, we have:

Case i∈ CX.

(7.7)X ⇒ wpX.Xi .(7.7)X

⇚ {wp is monotonic}

(7.7)X ⇒ wpX.Xi .(bY ⇒ pcY 6∈ CY)

≡ {wp definition}{Xi does not modifybY or pcY}

(bY ⇒ pcY 6∈ CY) ∧ pcX = i ⇒ (bY ⇒ pcY 6∈ CY)

≡ {logic}

true

Case i= 1.

(7.7)X ⇒ wpX.X1.(7.7)X

⇚ {wp is monotonic}

(7.7)X ⇒ wpX.X1.(bY ⇒ pcY 6∈ CY)
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≡ {wp definition}{logic}

pcX = 1 ⇒ (bY ⇒ pcY 6∈ CY)

This calculation suggests that we use Lemma 6.39 (property strengthening) to replace

(7.7)X by enforced invariant

pcX ∈ DX ∧ bY ⇒ pcY 6∈ CY (7.9)

whereDX =̂ CX ∪ {1}.

Correctness of(7.8)X. This is established using Lemma 4.18 (invariant) which in-

volves case analysis on the program statements. CasesXi andYi such thati ∈ NX ∪NY ∪

{2, 3} are trivial because they establishpcX 6∈ CX ∨ pcY 6∈ CY. CasesXi andYi such that

i ∈ CX ∪ CY are trivial because these statements do not modifybY. For the remaining

statements,X1 andY1, we have the following calculations.

Case X1.

(7.8)X ⇒ wpX.X1.(7.8)X

⇚ {wp is monotonic}{1 6∈ CX}

pcX = 1 ⇒ pcY 6∈ CY ∨ bY

This condition may be established by enforcing assertionpcY 6∈ CY ∨ bY at X1.

Case Y1. Using(7.9)Y, i.e.,2(pcY ∈ DY ∧ bX ⇒ pcX 6∈ CX), and assertionpcX 6∈ CX ∨

bX at Y1 (which may be expressed as2(pcY = 1 ⇒ pcX 6∈ CX ∨ bX)), we have the

following calculation.

(7.8)X ⇒ wpY.Y1.(7.8)X

⇚ {wp is monotonic}{1 6∈ CY}

pcY = 1 ⇒ pcX 6∈ CX ∨ bY

⇚ {pcX 6∈ CX ∨ bX at Y1}{logic}

pcY = 1 ∧ (pcX 6∈ CX ∨ bX) ⇒ pcX 6∈ CX

⇚ {(7.9)Y}

true
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Init: bX, bY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: X.ncs;

2: bX, bY ·[[skip]] ;

1: {? pcY 6∈ CY ∨ bY} X.cs;

3: bX, bY ·[[skip]]

]

ProcessY

∗[

0: Y.ncs;

2: bX, bY ·[[skip]] ;

1: {? pcX 6∈ CX ∨ bX} Y.cs;

3: bX, bY ·[[skip]]

]

?(7.9)X: 2(pcX ∈ DX ∧ bY ⇒ pcY 6∈ CY)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

Local correctness ofpcY 6∈ CY ∨ bY at X1. This may be established via an assignment

statementbY := true that immediately precedesX1, however, such an assignment makes

it difficult to establish correctness of(7.9)X. The alternative is to introduce synchro-

nisation statement⌊bY⌋ immediately beforeX1. Thus, using Theorem 6.62 (statement

introduction), we introduce askip with an empty frame atX4. The required proof, (6.65)

is straightforward to verify using Lemma 6.67 and Lemma 6.69. Then using Lemma 6.53

(statement replacement), we replace theskip atX4 with ⌊bY⌋ and introduce the following

enforced progress property

pcX = 4 pcX 6= 4. (7.10)

BecausebY is not in the frame ofY.cs, global correctness ofpcY 6∈ CY ∨ bY at X1 holds

against all statements in processY exceptY1. ForY1, we obtain the following calculation:

(pcY 6∈ CY ∨ bY) ∧ pcX = 1 ⇒ wpY.Y1.(pcY 6∈ CY ∨ bY)

⇚ {wp is monotonic}

pcX = 1 ∧ pcY = 1 ⇒ bY

≡ pcX = 1 ⇒ pcY 6= 1 ∨ bY

Thus, we use Lemma 6.39 (property strengthening) to replaceassertionpcY 6∈ CY ∨ bY

at X1 by pcY 6∈ DY ∨ bY which remains locally correct due to guardbY.
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Init: bX, bY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: X.ncs;

2: bX, bY ·[[skip]] ;

4: 〈if bY → skip fi〉 ;

1: {?GC pcY 6∈ DY ∨ bY} X.cs;

3: bX, bY ·[[skip]]

]

ProcessY

∗[

0: Y.ncs;

2: bX, bY ·[[skip]] ;

4: 〈if bX → skip fi〉 ;

1: {?GC pcX 6∈ DX ∨ bX} Y.cs;

3: bX, bY ·[[skip]]

]

?(7.10)X: pcX = 4 pcX 6= 4

?(7.9)X: 2(pcX ∈ DX ∧ bY ⇒ pcY 6∈ CY)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

FIGURE 7.4: Towards the safe sluice algorithm

Because the non-critical sections (X.ncs andY.ncs) may contain a non-terminating

loop, to ensure individual progress for the mutual exclusion problem, one must assume

weak fairness, which suggests thatbY should be stable under processY [DM06]. How-

ever, by(7.9)X, assignmentbY := falsewill eventually need to be introduced in process

Y, which meansbY cannot be stable under processY. Our solution is to weaken the

guard ofX4 by

(i) using a disjunctive guard atX3 and ensuring stability of only one of the disjuncts,

or

(ii) introducing a second synchronisation statement.

The consequences of(i) are explored in Section 7.3, leading to Peterson’s algorithm,

while (ii) is explored in Section 7.4, leading to Dekker’s algorithm.
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7.3 Peterson’s mutual exclusion algorithm

The next example we consider is Peterson’s mutual exclusionalgorithm for two pro-

cesses [Pet81]. The derivation in [FvG99] first emphasises safety, and afterwards prog-

ress is ensured in an ad-hoc manner. An alternative derivation in [vdSFvG97] emphasises

progress-based derivation on an ad-hoc formalisation.

7.3.1 Derivation

The derivation picks up from the program in Fig. 7.4. Our strategy is to replace the guard

bY at X4 by the disjunctionbY ∨ sY and ensure stability of only one of the disjuncts, say

sY. Thus, we obtain the program in Fig. 7.5. We aim to prove the refinement using The-

orem 6.47 (data refinement with enforced invariants) using the following representation

program:

rep =̂ bX, bY := bX ∨ sX, bY ∨ sY; rem sX, sY.

This ensures that the guard ofX4 in the abstract and concrete programs are equivalent.

Because the refinement may not preserve properties on private variables, we turn prop-

erties in Fig. 7.4 that involvebY andbX (namely(7.8)X and(7.8)Y) back into enforced

properties. This modification is justified by Lemma 6.40.

Application of Theorem 6.47 (data refinement with enforced invariants) must take

all enforced invariants and assertions into account. Hencewe replace each enforced

assertion and invariantP with wp.rep.P, which is allowed becauserep is conjunctive.

Thus, globally correct assertionpcY 6∈ DY ∨ bY at X1 is replaced withpcY 6∈ DY ∨ bY ∨

sY, and(7.8)X and(7.9)X are respectively replaced by

2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY ∨ sY) (7.11)

2(pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6∈ CY). (7.12)
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Init: sX, sY, bX, bY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: X.ncs;

2: bX, bY, sX, sY ·[[skip]]

4: 〈if bY ∨ sY → skip fi〉 ;

1: {?GC pcY 6∈ DY ∨ bY ∨ sY} X.cs;

3: bX, bY, sX, sY ·[[skip]]

]

ProcessY

∗[

0: Y.ncs;

2: bX, bY, sX, sY ·[[skip]]

4: 〈if bX ∨ sX → skip fi〉 ;

1: {?GC pcX 6∈ DX ∨ bX ∨ sX} Y.cs;

3: bX, bY, sX, sY ·[[skip]]

]

?(7.10)X: pcX = 4 pcX 6= 4

?(7.11)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY ∨ sY)

?(7.12)X: 2(pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6∈ CY)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

FIGURE 7.5: Peterson’s derivation: replace guard

We define

gcaX ≡ pcX = 1 ⇒ pcY 6∈ DY ∨ bY

gcaY ≡ pcY = 1 ⇒ pcX 6∈ DX ∨ bX

PP ≡ (7.10)X ∧ (7.10)Y ∧ (7.11)X ∧ (7.11)Y ∧

(7.12)X ∧ (7.12)Y ∧ gcaX ∧ gcaY

andQQ≡ wp.rep.PP.

Condition (6.48).

addbX, bY; bX, bY ·[[pcX, pcY := 0, 0]]; ⌊PP⌋ ⊑

addbX, bY, sX, sY; sX, sY, bX, bY ·[[pcX, pcY := 0, 0]]; ⌊QQ⌋; rep

⇚ {Lemma 6.15 (monotonicity)}{definition ofQQ}

(bX, bY) :∈ B
2; ⌊PP⌋ ⊑ addsX, sY; (sX, sY, bX, bY) :∈ B

4; ⌊wp.rep.PP⌋; rep

⇚ {Lemma 6.16}

(bX, bY) :∈ B
2; ⌊PP⌋ ⊑ addsX, sY; (sX, sY, bX, bY) :∈ B

4; rep; ⌊PP⌋

⇚ {Lemma 6.15 (monotonicity)}{definition ofrep}
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{x :∈ B ⊑⊒ (x, y) :∈ B
2; x := x ∨ y}

(bX, bY) :∈ B
2 ⊑ addsX, sY; (bX, bY) :∈ B

2; rem sX, sY

≡ {Lemma 6.56}{Lemma 6.15 (reflexivity)}

true

Condition (6.49).We recall that we useaX.i andcX.i to refer to the statement labelledi

in processX of the abstract and concrete programs, respectively. The proof for each of

these statements is trivial except forcX.4.

rep; ⌊PP⌋; aX.4; ⌊PP⌋ ⊑ ⌊QQ⌋; cX.4; ⌊QQ⌋; rep

≡ {expandaX.4 andcX.4}

rep; ⌊PP⌋; ⌊pcX = 4 ∧ bY⌋; pcX := 1; ⌊PP⌋ ⊑

⌊QQ⌋; ⌊pcX = 4 ∧ (bY ∨ sY)⌋; pcX := 1; ⌊QQ⌋; rep

⇚ {Lemma 6.16}{rep; pcX := 1 ⊑⊒ pcX := 1; rep}

⌊wp.rep.(PP∧ pcX = 4 ∧ bY)⌋; pcX := 1; ⌊wp.rep.PP⌋; rep ⊑

⌊QQ⌋; ⌊pcX = 4 ∧ (bY ∨ sY)⌋; pcX := 1; ⌊QQ⌋; rep

≡ {rep is conjunctive}{Lemma 6.15 (commutativity and monotonicity)}

⌊pcX = 4 ∧ wp.rep.PP∧ (bY ∨ sY)⌋; pcX := 1; ⌊wp.rep.PP⌋ ⊑

⌊pcX = 4 ∧ QQ∧ (bY ∨ sY)⌋; pcX := 1; ⌊QQ⌋

≡ {by definitionQQ≡ wp.rep.PP}{Lemma 6.15 (reflexivity)}

true

Condition (6.50).This proof is trivial because no new statements are have beenintro-

duced.

Condition (6.51).We note that becauserep is deterministic and becausesX andsY do

not appear inPP, ¬wp.rep.PP≡ wp.rep.(¬PP).

rep; ⌊¬PP∨ (∀pi wpp.(ap.i).(¬PP))⌋ ⊑ ⌊¬QQ∨ (∀pi wpp.(cp.i).(¬QQ))⌋; rep

⇚ {Lemma 6.16}{Lemma 6.15 (monotonicity)}

⌊wp.rep.(¬PP∨ (∀pi wpp.(ap.i).(¬PP)))⌋ ⊑ ⌊¬QQ∨ (∀pi wpp.(cp.i).(¬QQ))⌋

≡ {Lemma 6.15 (guard strengthening)}{wp logic}
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¬QQ∨ (∀pi wpp.(cp.i).(¬QQ)) ⇒ ¬wp.rep.PP∨ (∀pi wpp.(rep; ap.i).(¬PP)))

⇚ {definition ofQQ}{logic}

(∀pi wpp.(cp.i; rep).(¬PP) ⇒ wpp.(rep; ap.i).(¬PP))

We now perform case analysis oni ∈ PC. Due to the symmetry between processesX

andY, we only need to consider the statements within processX, i.e., i ∈ PCX.

Cases i∈ NX ∪ DX. These cases are trivial becauseaX.i and cX.i are identical, and

furthermore, do not modifybX, bY, sX, andsY.

Cases i∈ {2, 3}. We consideri = 2 in detail. The proof fori = 3 is identical.

wpX.(bX, bY, sX, sY ·[[skip]]; rep).(¬PP) ⇒ wpX.(rep; bX, bY ·[[skip]]).(¬PP)

≡ wp.(bX, bY :∈ B
2; pcX := 4).(¬PP) ⇒ wp.(bX, bY ·[[skip]]; pcX := 4).(¬PP)

≡ true

Cases i= 4.

wpX.(⌊bY ∨ sY⌋; rep).(¬PP) ⇒ wpX.(rep; ⌊bY⌋).(¬PP)

≡ {Lemma 6.16}

wp.(⌊bY ∨ sY⌋; rep; pcX := 1).(¬PP) ⇒ wp.(⌊bY ∨ sY⌋; rep; pcX := 1).(¬PP)

≡ true

Condition (6.52).Becauserep is continuous, this condition holds by Lemma 6.61.

Correctness of(7.11)X. This proof is identical to(7.8)X.

Correctness of(7.10)X. We aim to use Lemma 4.83 (stable guard), where we choose

NY to be the setRR, DY to beTT, andR to bepcX = 4 ∧ sY. Thus for (4.75), we must

introduce enforced property

2(pcX = 4 ∧ pcY ∈ NY ⇒ bY ∨ sY). (7.13)
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Then, to ensurestY.R holds becausestY.(pcX = 4) holds, we introduce the following

enforced property:

stY.sY. (7.14)

We introduce a well-founded relation(≺, PCY), which for (4.76) we ensure1 ≺ k holds

for all k ∈ NY. We ensure3 ≺ j holds for all j ∈ DY, and hence due toCAY, property

pcY = j ∧ j ∈ DY  pcY ≺ j holds, which guarantees (4.72). The rest of the labels in

(≺, PCY) correspond to the reverse execution order of processY, and we motivate the

base of the ordering below. Because[ wpX.X4.(pcX 6= 4) ] holds andYj cannot establish

pcX 6= 4, by monotonicity, (4.85) holds if the following holds:

(∀j:(PCY−NY)−DY[ I ∧ pcX = 4 ∧ pcY = j ⇒

wpY.Yj .(pcY ≺ j ∨ sY) ∧ (sY ∨ bY ∨ gY.Yj) ]).

(7.15)

Since processY is a potentially non-terminating loop, finding an appropriate base for

(≺, PCY) is difficult. One possible approach is to use Heuristic 4.80,which says that we

may choose the label of blocking statementY4 as the base. However, the proof of the

base casepcY = 4 requires the introduction of

2(pcX = 4 ∧ pcY = 4 ⇒ ¬bX ∧ ¬sX ∧ (bY ∨ sY)) (7.16)

which specifies(7.16)X ∧ (7.16)Y, i.e., total deadlock whenpcX = 4 ∧ pcX = 4 holds,

and hence is problematic. That is, label4 is a poor choice as a base of(≺, PCY).

Instead, we use Heuristic 4.61 to introduce statement5: sY := true and use label5

as the base of(≺, PCY). The placement ofY5 is unclear, however, case analysis onj in

(7.15) proceeds as follows.

Case j∈ {2, 3}. Each of these cases are trivial becauseYj establishespcY ≺ j.

Case j= 4. BecausewpY.Y4.(pcY ≺ 4) holds, this case is discharged by enforcing the

following invariant:

2(pcX = 4 ∧ pcY = 4 ⇒ bY ∨ sY ∨ bX ∨ sX) (7.17)

which ensures that one ofX4 andY4 is enabled whenpcX = 4 ∧ pcY = 4 holds.

Of the newly introduced conditions, (7.17) holds by Lemma 4.29 (invariant conse-

quent) if we introduce statements that establish the consequent at control points that
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immediately precede statementsX4 andY4. This is also consistent with Heuristic 4.80

which suggests that an appropriate base of a well-founded relation should immediately

precede a blocking statement. Hence we use Theorem 6.62 (statement introduction)

to introduce5: sX, sY ·[[skip]] immediately afterY2, then use Lemma 6.54 (statement re-

placement (2)) to replaceY5 by5: sX ·[[sY := true]]. We keepsX in the frame ofY5 to allow

future modification ofsX at or afterY5 in processY.

Init: sX, sY, bX, bY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: X.ncs;

2: bX, bY ·[[skip]] ;

5: sY ·[[sX := true]] ;

4: 〈if bY ∨ sY → skip fi〉 ;

1: {?GC pcY 6∈ DY ∨ bY ∨ sY} X.cs;

3: bX, bY, sX, sY ·[[skip]]

]

ProcessY

∗[

0: Y.ncs;

2: bX, bY ·[[skip]] ;

5: sX ·[[sY := true]] ;

4: 〈if bX ∨ sX → skip fi〉 ;

1: {?GC pcX 6∈ DX ∨ bX ∨ sX} Y.cs;

3: bX, bY, sX, sY ·[[skip]]

]

?(7.12)X: 2(pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6∈ CY)

?(7.13)X: 2(pcX = 4 ∧ pcY ∈ NY ⇒ bY ∨ sY)

?(7.14)Y: stY.sY

?(7.17): 2(pcX = 4 ∧ pcY = 4 ⇒ bY ∨ sY ∨ bX ∨ sX)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

(7.11)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY ∨ sY)

Correctness of(7.12)X. The proof against each program statement exceptX4 andY1

is trivial. For casesX4 andY1, we have the following calculations.

Case X4.

(7.12)X ⇒ wpX.X4.(7.12)X

≡ {wp calculation}{4 6∈ CX}{1 ∈ DX}

pcX = 4 ∧ (bY ∨ sY) ⇒ pcY 6∈ CY
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This suggests that we introduce enforced assertion(bY ∨ sY) ⇒ pcY 6∈ CY at X4.

Case Y1.

(7.12)X ⇒ wpY.Y1.(7.12)X

⇚ {wp calculation}{1 6∈ CY}{wp is monotonic}

pcY = 1 ⇒ ¬(pcX ∈ DX ∧ (bY ∨ sY))

≡ pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6= 1

This suggests we use Lemma 6.39 (property strengthening) toreplace(7.12)X by

2(pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6∈ DY). (7.18)

Correctness of(7.18)X. This time, we need to consider statementsX4 andY4.

Case X4.

(7.18)X ⇒ wpX.X4.(7.18)X

≡ {wp calculation}{4 6∈ CX}{1 ∈ DX}

pcX = 4 ∧ (bY ∨ sY) ⇒ pcY 6∈ DY

This suggests that we strengthen the enforced assertion atX4 to (bY ∨ sY) ⇒ pcY 6∈ DY.

Case Y4. We use assertionbX ∨ sX ⇒ pcX 6∈ DX at Y4 introduced above.

(7.18)X ⇒ wpY.Y4.(7.18)X

⇚ {wp calculation}{4 6∈ DY}{wp is monotonic}

pcY = 4 ∧ (bX ∨ sX) ⇒ pcX 6∈ DX ∨ ¬(bY ∨ sY)

≡ pcY = 4 ∧ (bX ∨ sX) ∧ (bY ∨ sY) ⇒ pcX 6∈ DX

≡ {(bX ∨ sX) ⇒ pcX 6∈ DX at Y4}

true

Global correctness ofpcY 6∈ DY ∨ bY ∨ sY at X1. This is only endangered by state-

mentY4. UsingbX ∨ sX ⇒ pcX 6∈ DX at Y4, we have the following calculation.
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pcX = 1 ∧ (pcY 6∈ DY ∨ bY ∨ sY) ⇒ wpY.Y4.(pcY 6∈ DY ∨ bY ∨ sY)

≡ pcX = 1 ∧ pcY = 4 ∧ (bX ∨ sX) ⇒ bY ∨ sY

≡ {assertion atY4}

pcX = 1 ∧ pcY = 4 ∧ (bX ∨ sX) ∧ pcX 6∈ DX ⇒ bY ∨ sY

≡ {1 ∈ DX}

true

Correctness of(7.14)Y. This may be achieved by using Lemma 6.58 (frame reduction)

to removesY from the frame ofY3 andInit.

Correctness of(7.13)X. Correctness in processX against each statement exceptX5 is

trivial, because they falsify the antecedent of(7.13)X. StatementX5 establishespcX = 4

and may also falsifysY. Hence we use Lemma 6.39 (property strengthening) to replace

(7.13)X by

2(pcY ∈ NY ⇒ bY). (7.19)

Correctness of(7.19)X. Correctness against processX may be achieved by using Lem-

ma 6.58 (frame reduction) to removebY from the frame of each statement inX. Because

bY is not modified byY.ncs, correctness in processY may be achieved by using Lem-

ma 6.54 (statement replacement (2)) to replaceY3 by bY := true. BecauseInit estab-

lishespcY ∈ NY, we use Lemma 6.55 (initialisation replacement) to replaceInit with

pcX, pcY, bX, bY := 0, 0, true, true.
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Init: pcX, pcY, bX, bY := 0, 0, true, true

ProcessX

∗[

0: X.ncs;

2: bX ·[[skip]] ;

5: sY ·[[sX := true]] ;

4: {? bY ∨ sY ⇒ pcY 6∈ DY}

〈if bY ∨ sY → skip fi〉 ;

1: {pcY 6∈ DY ∨ bY ∨ sY} X.cs;

3: bX := true

]

ProcessY

∗[

0: Y.ncs;

2: bY ·[[skip]] ;

5: sX ·[[sY := true]] ;

4: {? bX ∨ sX ⇒ pcX 6∈ DX}

〈if bX ∨ sX → skip fi〉 ;

1: {pcX 6∈ DX ∨ bX ∨ sX} Y.cs;

3: bY := true

]

?(7.17): 2(pcX = 4 ∧ pcY = 4 ⇒ bY ∨ sY ∨ bX ∨ sX)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

(7.11)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY ∨ sY)

(7.14)Y: stY.sY

(7.18)X: 2(pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6∈ DY)

(7.19)X: 2(pcY ∈ NY ⇒ bY)

Correctness ofbY ∨ sY ⇒ pcY 6∈ DY at X4. To simplify our reasoning, we split the

assertion into

bY ⇒ pcY 6∈ DY at X4 (7.20)

sY ⇒ pcY 6∈ DY at X4 (7.21)

Correctness of(7.20)X. Local correctness is difficult to achieve becausebY cannot be

modified in processX. Hence we turn(7.20)X into a property of processY and use

Lemma 6.39 (property strengthening) to replace(7.20)X by

2(pcY ∈ DY ⇒ ¬bY).

Correctness of this new property in processX is trivial becauseX does not modifybY.

To achieve correctness in processY, we usewp calculations and obtain the following
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property, which implies2(pcY ∈ DY ⇒ ¬bY).

2(pcY ∈ DY ∪ {4, 5} ⇒ ¬bY) (7.22)

Correctness of(7.22)X. This may be achieved by using Lemma 6.54 (statement re-

placement (2)) to replaceY2 by 2: bY := false5:, i.e., the statement that establishes

pcY = 5 also establishes¬bY.

Correctness of(7.21)X. Local correctness may be achieved by introducing a statement

that falsifiessY just beforeX4. However, due to(7.17), the statement beforeX4 must also

establishsX. Hence we use Lemma 6.54 (statement replacement (2)) to replaceX5 with

the multiple assignment5: sX, sY := true, false.

Global correctness may be endangered by statementY4, which gives us the following

calculation.

pcX = 4 ∧ (sY ⇒ pcY 6∈ DY) ⇒ wpY.Y4.(sY ⇒ pcY 6∈ DY)

≡ pcX = 4 ∧ pcY = 4 ∧ (sX ∨ bX) ⇒ ¬sY

≡ (pcX = 4 ∧ pcY = 4 ∧ sX ⇒ ¬sY) ∧ (pcX = 4 ∧ pcY = 4 ∧ bX ⇒ ¬sY)

≡ {(7.22)Y}

pcX = 4 ∧ pcY = 4 ∧ sX ⇒ ¬sY

By combining the resulting formula with(7.17), we obtain

pcX = 4 ∧ pcY = 4 ⇒ (sX ⇔ ¬sY) (7.23)

which using Lemma 6.39 (property strengthening), may be used to replace(7.17). Cor-

rectness of (7.23) is trivial to prove, thus, we obtain the final program in Fig. 7.6.

7.3.2 Discussion

We have derived Peterson’s algorithm from the safe sluice algorithm and in particular

have shown that Peterson’s is a refinement of safe sluice. Thederivation in [DM06]
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Init: pcX, pcY, bX, bY := 0, 0, true, true

ProcessX

∗[

0: X.ncs;

2: bX := false;

5: sX, sY := true, false;

4: {sY ⇒ pcY 6∈ DY}

〈if bY ∨ sY → skip fi〉 ;

1: {pcY 6∈ DY ∨ bY ∨ sY} X.cs;

3: bX := true

]

ProcessY

∗[

0: Y.ncs;

2: bY := false;

5: sX, sY := false, true ;

4: {sX ⇒ pcX 6∈ DX}

〈if bX ∨ sX → skip fi〉 ;

1: {pcX 6∈ DX ∨ bX ∨ sX} Y.cs;

3: bY := true

]

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

(7.11)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY ∨ sY)

(7.14)Y: stY.sY

(7.18)X: 2(pcX ∈ DX ∧ (bY ∨ sY) ⇒ pcY 6∈ DY)

(7.19)X: 2(pcY ∈ NY ⇒ bY)

(7.22)X: 2(pcY ∈ DY ∪ {4, 5} ⇒ ¬bY)

(7.23): 2(pcX = 4 ∧ pcY = 4 ⇒ (sY ⇔ ¬sX))

FIGURE 7.6: Peterson’s algorithm

follows a similar pattern, but the guard of the synchronisation statement is simply weak-

ened without ensuring a refinement. Normally, weakening a guard is not a refinement

because the new program could potentially end up with more traces than the original.

Note that one could perform a final data refinement by introducing a variablev which

may take a value from{X, Y}, and turn statementX4 into v := Y, which meanssY ≡

(v = X). However, we do not present this refinement because it is a standard exercise in

data refinement.
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7.4 Dekker’s algorithm

In this section, we present a derivation of Dekker’s algorithm [Dij68], which is histori-

cally the first mutual exclusion algorithm for two concurrent components. The majority

of its code is concerned with progress [FvG99], which makes it an attractive experi-

ment for our program derivation techniques. This algorithmis different from Peter-

son’s because not all guards are stable. Furthermore, thereis an additional restriction

that each guard may only access at most one shared variable. It remains a challenge

to reason formally and effectively about the progress properties of Dekker’s algorithm

[Fra86, FvG99].

7.4.1 Derivation

This derivation picks up from the program in Fig. 7.4. We address correctness of prog-

ress property(7.10)X, i.e.,pcX = 4  pcX 6= 4 without requiring stability of the guard

of X4.

Correctness of(7.10)X. We use Lemma 4.81 (unstable guard), where we substitute

NY for RRandDY for TT. Condition (4.75) requires that we introduce the following

enforced invariant2(pcX = 4 ∧ pcY ∈ NY ⇒ bY), which is implied by

2(pcY ∈ NY ⇒ bY) (7.24)

We introduce a well-founded relation(≺, PCY) such that2 ≺ j for eachj ∈ NY, which

satisfies (4.76). Furthermore, we ensure3 ≺ k for eachk ∈ DY, thus due toCAY,

pcY = k pcY ≺ k holds, and hence (4.72) holds. BecausewpX.X4.(pcX 6= 4) holds, by

monotonicity ofwp, proof obligation (4.82) is implied by:

(∀j:(PCY−NY)−DY [ I ∧ pcX = 4 ∧ pcY = j ⇒ (bY ∨ gY.Yj) ∧ wpY.Yj .(pcY ≺ j) ]) (7.25)

We use Heuristic 4.80 and aim to use a blocking statement as a base of(≺, PCY). How-

ever, label4 is a poor choice because the conditions that result from Lemma 4.78 (base

progress) specifies total deadlock whenpcX = 4 ∧ pcY = 4.
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Instead, we introduce a new blocking statement (with a freshguard) to use as the

base of(≺, PCY). We use Lemma 6.57 (extend frame) to introduce fresh variablessX

andsY to the program, then using Lemma 6.58 (frame reduction) we removesX andsY

from the frames ofX.ncs,X4, andX.cs. By Heuristic 4.80 statements at the base of the

well-founded relation should precede blocking statements. Hence we use Theorem 6.62

(statement introduction) to introduce statement5: bX, bY ·[[skip]] immediately beforeY4.

We keepbX andbY in the frame ofY5 because it precedes blocking statementY4 with

guardbX. Finally, using Lemma 6.53 (statement replacement), we replaceY5 with block-

ing statement〈if sX → bX, bY ·[[skip]] fi〉, which requires that we introduce the symmetric

equivalent of the following progress property.

pcX = 5 pcX 6= 5. (7.26)

Init: bX, bY, sX, sY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: X.ncs;

2: bX, bY, sX, sY ·[[skip]]

5: 〈if sY → bX, bY ·[[skip]] fi〉 ;

4: 〈if bY → skip fi〉 ;

1: {?GC pcY 6∈ DY ∨ bY} X.cs;

3: bX, bY, sX, sY ·[[skip]]

]

ProcessY

∗[

0: Y.ncs;

2: bX, bY, sX, sY ·[[skip]]

5: 〈if sX → bX, bY ·[[skip]] fi〉 ;

4: 〈if bX → skip fi〉

1: {?GC pcX 6∈ DX ∨ bX} Y.cs;

3: bX, bY, sX, sY ·[[skip]]

]

?(7.9)Y: 2(pcX ∈ DY ∧ bY ⇒ pcY 6∈ CY)

?(7.24)X 2(pcY ∈ NY ⇒ bY)

?(7.25)X: (∀j:(PCY−NY)−DY
[ I ∧ pcX = 4 ∧ pcY = j ⇒ (bY ∨ gY.Yj) ∧ wpY.Yj .(pcY ≺ j) ])

?(7.26)X: pcX = 5 pcX 6= 5

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

Correctness of(7.25)X. This involves case analysis onj ∈ (PCY − NY) − DY.
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Cases j∈ {2, 3}. These cases are trivial becauseYj is non-blocking and guaranteed to

establishpcY ≺ j.

Case j = 4. We prove this case using Lemma 4.65 (deadlock preventing progress)

resulting in proof obligation[ I ∧ pcX = 4 ∧ pcY = 4 ⇒ bX ∨ bY ], which may be

satisfied by introducing enforced invariant:

2(pcX = 4 ∧ pcY = 4 ⇒ bX ∨ bY). (7.27)

Case j= 5. This case represents the base of the relation. Hence we use Lemma 4.78

(base progress) to obtain proof obligation[ I ∧ pcX = 4 ∧ pcY = 5 ⇒ bY ∧ ¬sX ], which

may be satisfied by introducing enforced assertion¬sX atX4 andbY atY5. Note that this

is the only possible option becausebY at X4 negates the purpose of the guard ofX4 and

¬sX at Y5 specifies individual deadlock.

Correctness of(7.26)X. We aim to establish this property by using Lemma 4.83 (stable

guard) where we chooseRRto beNY, TT to beDY, andR to bepcX = 5 ∧ sY. Condition

(4.75) is satisfied by (7.28) below. BecausestY.(pcX = 5) holds, the stability requirement

is satisfied by (7.29) below.

2(pcX = 5 ∧ pcY ∈ NY ⇒ sY) (7.28)

stY.sY. (7.29)

Then, we introduce a well founded relation(≺≺, PCY), such that2 ≺≺ j for eachj ∈ NY,

which satisfies (4.76). Furthermore, we ensure3 ≺≺ k for eachk ∈ DY, which due to

CAX ensurespcY = k  pcY ≺≺ k and (4.72) is satisfied. Because processY cannot

modify pcX, conditionpcX = 5 ⇒ wpY.Yj .(pcX = 5) holds and (4.85) is implied by:

(∀j:(PCY−NY)−DY[ I ∧ pcX = 5 ∧ pcY = j ⇒ wpY.Yj .(pcY ≺≺ j ∨ sY) ∧ (sY ∨ gY.Yj) ]).

(7.30)

Once again, the label corresponding to the blocking statementsY5 andY4 are not appro-

priate bases because the generated proof obligations specify total deadlock. This leaves

us with two choices, namely, statementsY2 andY3. We aim to modify the program so

the base statement establishes the stable guardsY, i.e.,wpY.Yj .sY holds for the basej.
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Now, condition (7.30) is proved by the possible values ofj. For j ∈ {2, 3}, the proof

is trivial because[ wpY.Yj .(pcY ≺≺ j ∨ sY) ] holds. Forj = 4, we have[ I ∧ pcX = 5 ∧

pcY = 4 ⇒ sY ∨ bX ], which holds due to the enforced assertionbX at X5 (see casej = 5

in the correctness proof of(7.25)X). For j = 5, we obtain:

2(pcX = 5 ∧ pcY = 5 ⇒ sY ∨ sX). (7.31)

Of the newly introduced conditions,(7.28)X suggests thatsY be established just before

NY. Due to the loop, we choose3 to be the base of(≺≺, PCY), and hence we use Lem-

ma 6.54 (statement replacement (2)) to replaceY3 by 3: bX, bY, sX ·[[sY := true]].

Init: bX, bY, sX, sY ·[[pcX, pcY := 0, 0]]

ProcessX

∗[

0: {? bX} X.ncs;

2: bX, bY, sX, sY ·[[skip]]

5: {? bX}

〈if sY → bX, bY ·[[skip]] fi〉 ;

4: {?¬sX}

〈if bY → skip fi〉 ;

1: {?GC pcY 6∈ DY ∨ bY} X.cs;

3: bX, bY, sY ·[[sX := true]]

]

ProcessY

∗[

0: {? bY} Y.ncs;

2: bX, bY, sX, sY ·[[skip]]

5: {? bY}

〈if sX → bX, bY ·[[skip]] fi〉 ;

4: {?¬sY}

〈if bX → skip fi〉

1: {?GC pcX 6∈ DX ∨ bX}Y.cs;

3: bX, bY, sX ·[[sY := true]]

]

?(7.9)Y: 2(pcX ∈ DY ∧ bY ⇒ pcY 6∈ CY)

?(7.24)X: 2(pcY ∈ NY ⇒ bY)

?(7.27)X: 2(pcX = 4 ∧ pcY = 4 ⇒ bX ∨ bY)

?(7.29)Y: stY.sY

?(7.28)X: 2(pcX = 5 ∧ pcY ∈ NY ⇒ sY)

?(7.31)X: 2(pcX = 5 ∧ pcY = 5 ⇒ sY ∨ sX)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

Due to(7.29)Y, correctness of assertions and invariants involvingsX andsY are more

difficult to establish, hence we reason about them first.
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Correctness of¬sX at X4. IntroducingsX := falseto establish¬sX atX4 conflicts with

(7.29)X becausesX will not be stable in processX. Instead, we use the guard ofX5, i.e.,

sY to establish correctness by introducing the following enforced invariant

2(sY ⇒ ¬sX).

Note that strengthening2(sY ⇒ ¬sX) to 2(sY ⇔ ¬sX) allows us to discharge(7.31)X,

and hence we introduce:

2(sY ⇔ ¬sX). (7.32)

Global correctness of¬sX at X4 is now guaranteed due to(7.32) and (7.29)X. Local

correctness of¬sX at X4 is guaranteed by the guard ofX5.

Correctness of(7.31)X Using Lemma 6.39 (property strengthening) and (7.32), in-

variant(7.31)X may be removed from consideration.

Correctness of(7.32). This holds in processY if every statement inY either does

not modify bothsX andsY, or each assignmentsX := true is coupled with assignment

sY := false, and vice versa. Hence we use Lemma 6.54 (statement replacement (2)) to

replaceY3 with statement3: bX, bY ·[[sY, sX := true, false]], Lemma 6.58 (frame reduction)

to removesX andsY from the frame ofY2, and use Lemma 6.55 (initialisation replace-

ment) to replaceInit with

bX, bY ·[[pcX, pcY := 0, 0; sX :∈ B; sY := ¬sX]].

Correctness of(7.32) in processX is established via symmetric changes.

Correctness of(7.28)X. BecausesY is stable in processY, (7.28)X may be verified

by case analysis on the statements that establish the antecedent of(7.28)X. Correctness

against statementsInit andY3 (which establishpcY ∈ NY) are trivial because they falsify

pcX = 5 and establishsY, respectively. However, the proof for statementX2 (which

establishespcX = 5) is non-trivial. StatementX2 cannot establishsY due to(7.29)X and
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(7.32), i.e.,sY cannot be established by processX, and furthermoresY has been removed

from the frame ofX2. Enforced invariant(7.28)X is logically equivalent to

2(pcY ∈ NY ∧ ¬sY ⇒ pcX 6= 5).

Hence we look to modify processX so that ifpcY ∈ NY holds, processX cannot establish

pcX = 5. To facilitate this, we use(7.24)X (which ensuresbY holds whenpcY ∈ NY),

and introduce guard¬bY just beforeX5. BecausebY establishes local correctness of

pcY 6∈ DY ∨ bY atX1, we are presented with an opportunity to introduce an non-blocking

“if-then-else” statement that establishespcX = 1 if bY holds, andpcX = 5 if ¬bY holds.

However,bX will need to be modified beforeX5 for local correctness ofbX at X5. Thus,

we first use Theorem 6.62 (statement introduction) to introduce6: bX := true just before

X5. Then, using Theorem 6.47 (data refinement with enforced invariants), we introduce

the conditional described above using:

rep = if pcX = 7 ∧ PP→ (pcX := 6 ⊔ pcX := 1); ⌊PP⌋

[] pcX 6= 7 → skip fi

wherePP is the conjunction of all enforced invariants and “S1⊔S2” is theangelicchoice

betweenS1 andS2. For any predicateP and processp, [ wpp.(S1 ⊔ S2).P ≡ wpp.S1.P ∨

wpp.S2.P ]. The only non-trivial proof requirements are main statement X2 and new

statementX7. We have the following calculation forX2.

rep; ⌊PP⌋; aX.2; ⌊PP⌋ ⊑ ⌊PP⌋; cX.2; ⌊PP⌋; rep

⇚ aX.2 ⊑ cX.2; ⌊pcX = 7⌋; (pcX := 6 ⊔ pcX := 1)

⇚ {Lemma 6.15 (monotonicity)}{a; b⊔ a; c ⊑ a; (b⊔ c)}

pcX := 6 ⊑ (pcX := 7; pcX := 6) ⊔ (pcX := 7; pcX := 1)

⇚ true

We use the following result of Celiku and von Wright [CvW03] for any predicatesP

andQ.

P ⇒ wp.(S1 ⊔ S2).Q ≡ (∃R:PΣ (P ∧ R⇒ wp.S1.Q) ∧ (P ∧ ¬R⇒ wp.S2.Q))
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TakingS1 andS2 to bepcX := 6 andpcX := 1, respectively,P to betrue, and instantiating

R to¬bY, we obtain the following calculation for any predicateQ.

wp.(pcX := 6 ⊔ pcX := 1).Q

≡ (¬bY ⇒ wp.(pcX := 6).Q) ∧ (bY ⇒ wp.(pcX := 1).Q)

≡ wp.(if ¬bY → pcX := 6 [] bY → pcX := 1 fi).Q

Thus, the refinement proof for new statementX7 proceeds as follows:

rep ⊑ ⌊PP⌋; cX.7; ⌊PP⌋; rep

⇚ ⌊pcX = 7 ∧ PP⌋; (pcX := 6 ⊔ pcX := 1); ⌊PP⌋ ⊑ ⌊PP⌋; cX.7; ⌊PP⌋

⇚ {Lemma 6.15 (monotonicity)}{calculation above}

⌊pcX = 7⌋; (⌊¬bY⌋; pcX := 6 ⊓ ⌊bY⌋; pcX := 1) ⊑ cX.7

⇚ true

The proofs of the exit condition and internal convergence follow in a similar manner to

Theorem 6.62 (statement introduction).



7.4 DEKKER’ S ALGORITHM 207

Init: bX, bY ·[[pcX, pcY := 0, 0; sX :∈ B; sY := ¬sX]]

ProcessX

∗[

0: {? bX}X.ncs;

2: bX, bY ·[[skip]] ;

7: if 〈¬bY → skip〉

6: bX := true ;

5: {?GC bX}

〈if sY → bX, bY ·[[skip]] fi〉 ;

4: {¬sX}〈if bY → skip fi〉

[] 〈bY → skip〉 fi ;

1: {?GC pcY 6∈ DY ∨ bY} X.cs;

3: bX, bY ·[[sX, sY := true, false]]

]

ProcessY

∗[

0: {? bY}Y.ncs;

2: bX, bY ·[[skip]] ;

7: if 〈¬bX → skip〉

6: bY := true ;

5: {?GC bY}

〈if sX → bX, bY ·[[skip]] fi〉 ;

4: {¬sY}〈if bX → skip fi〉

[] 〈bX → skip〉 fi ;

1: {?GC pcX 6∈ DX ∨ bX} Y.cs;

3: bX, bY ·[[sY, sX := true, false]]

]

?(7.9)Y: 2(pcX ∈ DX ∧ bY ⇒ pcY 6∈ CY)

?(7.24)X: 2(pcY ∈ NY ⇒ bY)

?(7.27)X: 2(pcX = 4 ∧ pcY = 4 ⇒ bX ∨ bY)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

(7.29)Y: stY.sY

(7.28)X: 2(pcX = 5 ∧ pcY ∈ NY ⇒ sY)

(7.32): 2(sY ⇔ ¬sX)

We may now address correctness of enforced assertions and invariants that involve

bX andbY.

Correctness of(7.9)X. We may establish(7.9)X in processX by using Lemma 6.58

(frame reduction) to removebY from the frame of each statement inX. In processY,

any statement that can establishbY also establishespcY 6∈ CY, and thus, the proofs are

trivial. For the statementsYj that may establishpcY ∈ CY, if j ∈ CY, the proof is trivial

becauseYj does not modifybY, while casej = 1 can be satisfied by introducing enforced

assertion¬bY at Y1.
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Correctness of¬bX at X1. Local correctness holds if we introduce enforced assertion

¬bX at X4 andX7, while global correctness holds becausebX is not modified by process

Y.

Global correctness of¬bX at X4 and X7. This holds becausebX is not modified by

processY.

Global correctness ofbX at X5 and X0. This holds becausebX is not modified by

processY.

Global correctness ofpcY 6∈ DY ∨ bY at X1. Correctness must be verified againstY4

andY7. We use the recently introduced assertion¬bX atX1 as follows.

pcX = 1 ∧ (pcY 6∈ DY ∨ bY) ∧ (pcX = 1 ⇒ ¬bX) ⇒ wpY.Y4.(pcY 6∈ DY ∨ bY)

≡ pcX = 1 ∧ ¬bX ∧ pcY = 4 ∧ bX ⇒ (pcY := 1).(pcY 6∈ DY ∨ bY)

≡ false⇒ (pcY := 1).(pcY 6∈ DY ∨ bY)

≡ true

AgainstY7 we have.

pcX = 1 ∧ (pcY 6∈ DY ∨ bY) ∧ (pcX = 1 ⇒ ¬bX) ⇒ wpY.Y7.(pcY 6∈ DY ∨ bY)

≡ (pcX = 1 ∧ ¬bX ∧ pcY = 7 ∧ ¬bX ⇒ (pcY := 6).(pcY 6∈ DY ∨ bY)) ∧

(pcX = 1 ∧ ¬bX ∧ pcY = 7 ∧ bX ⇒ (pcY := 1).(pcY 6∈ DY ∨ bY))

≡ (pcX = 1 ∧ ¬bX ∧ pcY = 7 ⇒ true) ∧

(false⇒ (pcY := 1).(pcY 6∈ DY ∨ bY))

≡ true

Correctness of(7.27)X. Because¬bY and¬bX have been enforced atY4 andX4, re-

spectively,(7.27)X may be strengthened to

2(pcX 6= 4 ∨ pcY 6= 4). (7.33)
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Correctness of(7.24)X. This holds for processX because it does not modifybY. In

processY, the statements that falsifybY also falsifypcY ∈ NY. CaseY0 may be proved

using assertionbY at Y0.

Init: bX, bY ·[[pcX, pcY := 0, 0; sX :∈ B; sX := ¬sX]]

ProcessX

∗[

0: {?LC bX}X.ncs;

2: bX ·[[skip]] ;

7: {?LC¬bX}

if 〈¬bY → skip〉

6: bX := true ;

5: {bX}

〈if sX → bX ·[[skip]] fi〉 ;

4: {¬sX}{?LC¬bX}

〈if bY → skip fi〉

[] 〈bY → skip〉 fi ;

1: {pcY 6∈ DY ∨ bY}{¬bX}

X.cs;

3: bX ·[[sX, sY := true, false]]

]

ProcessY

∗[

0: {?LC bY}Y.ncs;

2: bY ·[[skip]] ;

7: {?LC¬bY}

if 〈¬bX → skip〉

6: bY := true ;

5: {bY}

〈if sX → bY ·[[skip]] fi〉 ;

4: {¬sY}{?LC¬bY}

〈if bX → skip fi〉

[] 〈bX → skip〉 fi ;

1: {pcX 6∈ DX ∨ bX}{¬bY}

Y.cs;

3: bY ·[[sY, sX := true, false]]

]

?(7.33): 2(pcX 6= 4 ∨ pcY 6= 4)

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

(7.9)Y: 2(pcX ∈ DX ∧ bY ⇒ pcY 6∈ CY)

(7.24)X: 2(pcY ∈ NY ⇒ bY)

(7.29)Y: stY.sY

(7.28)X: 2(pcX = 5 ∧ pcY ∈ NY ⇒ sY)

(7.32): 2(sY ⇔ ¬sX)

Correctness ofbX at X0. Local correctness holds if we use Lemma 6.55 (initialisation

replacement) to replaceInit by

pcX, pcY, bX, bY := 0, 0, true, true; sX :∈ B; sY := ¬sX.
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BecausebX is at the top of the loop, the statement at the end of the loop must also

establishbX, and hence we use Corollary 6.66 (assignment introduction)to introduce

statement8: bX := true just afterX3.

Local correctness of¬bX at X4. Due to assertionbX at X5, to establish¬bX, we must

falsify bX just beforeX4 via a new statement. Introducing a new statement9: bX := false

is however, problematic becauseX9; Y4 ⊑ Y4; X9 will not hold, i.e., the new statement

does not commute with guarded statement⌊bX⌋. We solve this by strengthening(7.33)

to

2(pcX 6∈ {4, 9} ∨ pcY 6∈ {4, 9}). (7.34)

Thus, if processX is executingX9, processY cannot be executing executeY4 or Y9, and

vice versa. That is, due to (7.34), we may use Corollary 6.66 (assignment introduction)

to introduce statementX9 to the program.

Correctness of(7.34). This holds because2(pcX ∈ {4, 9} ⇒ ¬sX) holds and further-

more, statementY5 (which establishespcY = 9) has guardpcY = 5 ∧ sX. The correctness

proof against statementY9 (which establishespcY = 4) is trivial.

7.4.2 Discussion

The algorithm we have derived is not quite Dekker’s algorithm, as presented by Feijen

and van Gasteren [FvG99]. Using a conditional, their algorithm allows one to bypass

lines statementsX6, X5, X9, and X4 if sY already holds. A second difference is that

the multiple assignment atX5 is replaced byv := Y, and the guardsX replaced by

v = Y, which is necessary to ensure the single variable assignment requirement. We

may easily transform our program to the version presented byFeijen and van Gasteren

[FvG99, pg 90] using Definition 6.22 (data refinement), however, we omit details of this

transformation because it is a simple refinement exercise.

A derivation of Dekker’s algorithm using the theory from Chapter 4 but without using

the techniques in Section 4.4 appears in [GD05]. Compared with the derivation in this
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thesis, the presentation in [GD05] is more complicated. We have devoted less time to

proving progress which has allowed us to consider the options at hand more easily and

each program modification is motivated more formally.

Francez [Fra86] presents a verification of the progress property of Dekker’s algo-

rithm, however, as Feijen and van Gasteren point out:

In [Fra86], one can find a formal treatment of Dekker’s algorithm, which

convincingly reveals that something very complicated is going on. [FvG99,

pg91]

Stolen [Stø90] presents a derivation of Dekker’s algorithmin a compositional setting,

however, although the specification is clearly that of a two process mutual exclusion

algorithm, it is unclear how the code for Dekker’s algorithmis generated. Furthermore,

the treatment of progress is not as rigorous as ours because their logic only allows one

to consider absence of total deadlock formally.

7.5 Conclusions

We have illustrated uses of the the theory from Section 4.4 and Chapter 6 via derivations

of an initialisation protocol and three mutual exclusion algorithms. From the derivations,

we learn that under weak fairness, stable guards form an important part of individual

progress. We have also demonstrated the effectiveness of our techniques for non-stable

guards.

We have shown how proofs of progress may be simplified by usinginduction. Much

of the effort in an inductive proof lies in finding an appropriate well-founded relation,

where we are required to find some metric on the state, a relation on this metric, and an

appropriate base of the relation. For our simpler programs,the metric used has been just

the program counters, but as seen in Section 5.3 and Section 5.4.1, it is possible to use

much more complicated metrics. We apply several heuristicsto identify an appropriate

base for the well-founded relation.
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Using our lemmas and heuristics from Section 4.4, we have been able to consider

each option at hand more easily. This has had the benefit that we can derive a number

of variants of each algorithm [DM08]. Reducing the complexity of a proof has a direct

impact on the derivations. Focus is shifted away from performing the proof to actual

program development. Furthermore, each modification to theprogram is justified using

the theorems and lemmas in Chapter 6, which ensures trace refinement of the original

program. Thus, we can be sure that the final program is an implementation of the origi-

nal. Notable in our refinement is that fact that therep statement is usually hidden away

within our lemmas. That is we are generally not required to define rep explicitly. This

is in contrast to methods such as Event-B, action systems andTLA where a refinement

relation between the abstract and concrete programs must bedefined (or derived) at each

refinement step. However, in contrast to Event-B [EB08], ifrep does need to be explic-

itly defined, we do not have techniques for deriving the required rep from failed proof

obligations.

Apart from a progress logic, Chandy and Misra [CM88] also present techniques

for progress-based construction of concurrent programs. With their method, one per-

forms refinements on the original specification until a levelof detail is reached where

the UNITY program is ‘obvious’. Hence derivations stay within the realms of specifi-

cations until the final step, where the specification is transformed to a UNITY program.

However, as each specification consists of a list of invariants and leads-to assertions, it

is hard to judge the overall structure of the program. Furthermore, it is difficult to decide

when there is enough detail in the specification to translateit to a program.

Lamport [Lam02] describes refinement techniques using the TLA formalism, how-

ever, due to the difficulty of temporal logic reasoning, doesnot describe how progress

properties are preserved. Lamport justifies this by claiming that progress is insignificant:

And remember that liveness properties are likely to be the least important

part of your specification. You will probably not lose much ifyou simply

omit them.[Lam02, pg88]

We clearly do not agree with this statement.
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Init: pcX, pcY, bX, bY := 0, 0, true, true; sX :∈ B; sY := ¬sX

ProcessX

∗[

0: {bX}X.ncs;

2: bX := false;

7: {¬bX}

if 〈¬bY → skip〉

6: bX := true ;

5: {bX}〈if sY → skip fi〉 ;

9: bX := false;

4: {¬sX}{¬bX}

〈if bY → skip fi〉

[] 〈bY → skip〉 fi ;

1: {pcY 6∈ DY ∨ bY}{¬bX}

X.cs;

3: sX, sY := true, false;

8: bX := true

]

ProcessY

∗[

0: {bY}Y.ncs;

2: bY := false;

7: {¬bY}

if 〈¬bX → skip〉

6: bY := true ;

5: {bY}〈if sX → skip fi〉 ;

9: bY := false;

4: {¬sY}{¬bY}

〈if bX → skip fi〉

[] 〈bX → skip〉 fi ;

1: {pcX 6∈ DX ∨ bX}{¬bY}

Y.cs;

3: sY, sX := true, false;

8: bY := true

]

Safe: 2(pcX 6∈ CX ∨ pcY 6∈ CY)

TAX: (∀i:NX 2(pcX = i ⇒ tX.Xi))

CAX: pcX ∈ DX  pcX 6∈ DX

LiveX: (∀i:PCX−NX pcX = i  pcX 6= i)

(7.8)X: 2(pcX 6∈ CX ∨ pcY 6∈ CY ∨ bY)

(7.9)Y: 2(pcX ∈ DX ∧ bY ⇒ pcY 6∈ CY)

(7.24)X: 2(pcY ∈ NY ⇒ bY)

(7.29)Y: stY.sY

(7.28)X: 2(pcX = 5 ∧ pcY ∈ NY ⇒ sY)

(7.32): 2(sY ⇔ ¬sX)

(7.34): 2(pcX 6∈ {4, 9} ∨ pcY 6∈ {4, 9})

FIGURE 7.7: Dekker’s algorithm
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8
Conclusion

We have presented techniques for verifying and deriving concurrent programs based on

both safety and progress requirements. Our derivation methods show that the verify-

while-develop paradigm is a viable alternative to an optimistic development followed

by a post-hoc verification. While program development clearly takes more time, each

modification step is well motivated by properties that the program code does not satisfy,

leading to simpler programs. Furthermore, our rules are such that each modification is

guaranteed to be a refinement of the original specification.

In Chapter 2, we described our programming framework, whichis based on Dijk-

stra’s Guarded Command Language. This language provides abstractions of constructs

that can be found in any imperative programming language, i.e., assignments, sequential

composition, conditionals and loops. We have also providednon-deterministic assign-

ment and frames, which are constructs used specifically for derivations. Our choice of

215



216 CONCLUSION

programming language is an important one because it allows use to develop programs in

a model that is much closer to an actual implementation, in contrast to frameworks such

as action systems, UNITY, TLA, I-O automata, etc. Thus, we can achieve a higher de-

gree of confidence in the accuracy of the translation from a model to an implementation.

Applicability of the Guarded Command Language to concurrency is achieved by

extending the language with atomicity brackets (which allows larger sections of code

be declared atomic), and labels (which together with program counters facilitates rea-

soning about the control state of the program). We provided an operational semantics

for this extended language, which formalises the executionmodel and allows concepts

such as divergence, non-termination and abortion to been formally defined. We are able

to distinguish the subtleties between divergence, non-termination and abortion for both

unlabelled and labelled statements.

Dongol and Goldson [DG06] describe how proofs of safety and progress may be

performed directly in this extended framework by combiningthe theories of Owicki-

Gries [OG76] with leads-to from UNITY [CM88]. Using our operational semantics, we

generalised these results and incorporated linear temporal logic (LTL) [MP92] directly

into the framework, which allows more general temporal properties to be expressed (and

hence proved). Furthermore, the logic is presented using program traces, which guar-

antees its soundness. Invariants (for proving safety) and leads-to (for proving progress)

are defined using LTL. We also re-proved some results from leads-to in UNITY [CM88]

using LTL, which generalises applicability of the theorems. In Chapter 4, we proved

that the logic of Dongol and Goldson [DG06] is sound by relating their rules for proving

safety and progress to the LTL foundations.

In Chapter 3, we formalised the concepts of weak and strong fairness in our frame-

work, which allows us to model assumptions on differing scheduler implementations.

We proved that every strongly fair trace is also weakly fair,which is a stronger result than

the relationship proved by Lamport [Lam02]. We formally defined blocking properties

(individual deadlock, total deadlock, individual progress, starvation, and livelock), as

well as non-blocking properties (wait-free, lock-free, and starvation-free), and provided
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a number of theorems that inter-relate these properties under differing fairness assump-

tions. We proved the non-blocking progress hierarchy, i.e., wait-free implies lock-free

(but not vice-versa), and lock-free implies obstruction-free (but not vice-versa). We in-

troduced the concept of a progress function that has allowedus to generalise our defini-

tions. As highlighted in Section 3.3.2, defining the different types of progress properties

informally can result in ambiguities. In the context of blocking programs, further sub-

tleties arise because properties like individual progressand starvation need to take the

fairness assumptions into account.

In Chapter 4, we explored for techniques proving safety and progress properties.

These techniques are calculational in the sense that we use predicate transformers which

either show that the required properties hold, or produce conditions that are necessary

for the required properties to hold. To this end, we defined the weakest liberal precon-

dition (wlp) and weakest precondition (wp) predicate transformers, which allow us to

prove partial and total correctness, respectively. Bothwlp andwp are defined using our

operational semantics foundations which ensures their soundness, then transformation

rules for our language of unlabelled and labelled statements are provided as lemmas.

Safety and progress properties are proved using invariantsand leads-to, respectively,

however, because invariants and leads-to have been defined using LTL, direct proofs

of these conditions are difficult. We follow the calculational theory of Feijen and van

Gasteren [FvG99] to prove invariants. We formalised the concepts of local and global

correctness, and showed how annotations and invariants areinter-related using labels

and program counters. Techniques for proving leads-to under weak fairness are adapted

from UNITY [CM88], but presented using the calculational style of Dongol and Goldson

[DG06]. (Unlike invariants, correctness of a leads-to property depends on the fairness

assumptions at hand.) In addition, we have presented calculational techniques for prov-

ing leads-to under minimal progress and strong fairness. Finally, several theorems that

use induction on a well-founded relation to simplify proofsof leads-to are provided.

These theorems extend those of Dongol and Mooij [DM06, DM08]by allowing multi-

ple (more than two) processes as well as the underlying fairness assumptions to be taken

into account. Furthermore, the theorems are structured in amanner that suits program



218 CONCLUSION

derivation.

Chapter 5, consisted of case studies where we verified progress properties of a num-

ber of example programs. We showed that the initialisation protocol satisfies individual

progress, and therefore terminates under both weak fairness and minimal progress. We

verified then-process bakery algorithm as a more significant case study. To complete

the proof of the non-blocking progress property hierarchy,we verified a program that is

lock-free, but not wait-free, and a program that is obstruction-free, but not lock-free.

In the derivation techniques of Feijen/van Gasteren and Dongol/Mooij, the abstract

specification consists of some incomplete code and ‘queriedproperties’ that are required

to hold of the final program [FvG99, DM06, DM08]. Statements and properties are

introduced, removed, modified in a systematic manner until aprogram whose code sat-

isfies the initial queried properties is obtained. However,unlike formalisms such as

action systems, Event-B, TLA, etc, there is no formal relationship between the abstract

specification and the implementation. Hence, the final program may generate traces that

the abstract program did not allow.

In Chapter 6, we presented a theory of refinement for the derivations of Feijen/van

Gasteren and Dongol/Mooij [DH09]. A challenge was to allow incremental modification

of statements and properties (like in the derivation methodof Feijen/van Gasteren and

Dongol/Mooij), yet ensure trace refinement (i.e., each observable trace of the modified

program is an observable trace of the abstract specification). Thus, the refinement rules

need to be as unrestrictive as possible in terms of the allowable modifications. Because

programs are modified in several small incremental steps, a second challenge was to

ensure that each modification generated as few proof obligations as possible. That is,

unlike frameworks such as action systems, Event-B, and TLA,which require a refine-

ment relation to be explicitly defined and proved, we aim to keep the refinement relation

hidden in the modification lemmas.

To formalise refinement of queried properties, we introduced the novel concept of

an enforced property, which may be any LTL formula. Thus enforced properties are

applicable to both safety and progress based derivations. Enforced properties restrict

the set of traces of a program so that traces that do not satisfy the enforced property are
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discarded. Several lemmas for introducing and manipulating enforced properties in a

manner that ensures trace refinement have been provided.

Proving trace refinement when program statements are modified is difficult, and

hence we introduced data refinement to our framework. We proved that data refinement

is sound by relating it to trace refinement. Fresh private variables that, for example, ac-

commodate additional points of synchronisation, are introduced using program frames

[Mor90], and several lemmas for modifying framed statements are provided. A theorem

for introducing statements that modify private variables is also provided. Because this

creates a new point of interference, commutativity betweenthe new statement and state-

ments that modify observable variables in all other processes must be verified, which is

a potentially expensive calculation. We thus provided lemmas and techniques that help

reduce the cost of introducing new statements. This is reflected in our derivations where

commutativity proofs are seldom required.

In Chapter 7, we presented derivations of a number of programs to demonstrate our

techniques. Namely, we derived the initialisation protocol and three mutual exclusion

programs: the safe sluice algorithm (which satisfies safetybut not progress), Peterson’s

algorithm (which satisfies safety and progress under weak fairness), and Dekker’s al-

gorithm (which satisfies safety and progress under weak fairness, but has additional

restrictions on the number of shared variables that can be accessed in a single atomic

step).

We feel that the techniques developed in this thesis form a stepping stone to the wider

task of a practical development approach for concurrent programs. The following may

be regarded as future work.

• In Chapter 7 we have derived programs consisting of only two processes using

the verification techniques in Section 4.4. However, because the logic is general

enough to deal withn-process programs, we could also consider derivations of

n-process programs. We expect that such derivations will be achallenge without

tool support.

• As highlighted in Chapter 5, proving lock-freedom is complicated because we
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must take the state of more than one process into account. We have introduced

techniques to reduce the complexity lock-freedom proofs [Don06b, CD07, CD09],

where we have proved that the Treiber stack [Tre86], the Michael-Scott queue

[MS96], and a bounded array queue [CG05] are lock free. Theseproof techniques

could be combined with the derivation theory in this thesis to to develop techniques

for the derivation of lock-free programs. We also hope to extend our verification

techniques to more general lock-free programs, for instance those with two or

more nested loops.

• We are currently working on applying the idea of enforcementto Chapter 6 other

frameworks such as action systems and event-B. We are also exploring enforced

properties in compositional frameworks such as rely-guarantee.
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