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Abstract

Concurrent programs are known to be complicated becausdymsation is required
amongst the processes in order to ensafety(nothing bad ever happens) apibgress
(something good eventually happens). Due to possiblef@rrce from other processes,
a straightforward rearrangement of statements within @gs® can lead to dramatic
changes in the behaviour of a program, even if the behavibtireoprocess executing

in isolation is unaltered. Verifying concurrent progranssng informal arguments are

Vi



usually unconvincing, which makes formal methods a netsedd¢owever, formal proofs
can be challenging due to the complexity of concurrent @og. Furthermore, safety
and progress properties are proved using fundamentatgrelift techniques. Within the

literature, safety has been given considerably more @tetitan progress.

One method of formally verifying a concurrent program is &velop the program,
then perform a post-hoc verification using one of the manyaiva frameworks. How-
ever, this approach tends to be optimistic because theas@program seldom satisfies
its requirements. When a proof becomes difficult, it can belaar whether the proof
technique or the program itself is at fault. Furthermordlofwing any modifications
to program code, a verification may need to be repeated frenbelginning. An alter-
native approach is to develop a program using a verify-wiideelop paradigm. Here,
one starts with a simple program together with the safety @odress requirements
that need to be established. Each derivation step congiatserification, followed by
introduction of new program code motivated using the prab&nselves. Because a
program is developed side-by-side with its proof, the catga program satisfies the

original requirements.

Our point of departure for this thesis is the Feijen and vast&an method for de-
riving concurrent programs, which uses the logic of Owiagld &ries. Although Feijen
and van Gasteren derive several concurrent programs, sethe Owicki-Gries logic
does not include a logic of progress, their derivations aadgsider safety properties
formally. Progress is considered post-hoc to the derivatising informal arguments.
Furthermore, rules on how programs may be modified have ret peesented, i.e., a
program may be arbitrarily modified and hence unspecifiecd\aetrs may be intro-

duced.

In this thesis, we develop a framework for developing corenirprograms in the
verify-while-develop paradigm. Our framework incorp@stinear temporal logic, LTL,
and hence both safety and progress properties may be givearisideration. We exam-
ine foundational aspects of progress by formalising mihpnagress, weak fairness and
strong fairness, which allow scheduler assumptions to bertted. We formally define

progress terms such axlividual progressindividual deadlocklivenessetc (which are
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properties of blocking programs) amehit-, lock-, andobstruction-freedontwhich are
properties of non-blocking programs). Then, we explordnter-relationships between
the various terms under the different fairness assumpti@esause LTL is known to
be difficult to work with directly, we incorporate the logi¢ Owicki-Gries (for proving
safety) and the leads-to relation from UNITY (for provinggress) within our frame-
work. Following the nomenclature of Feijen and van Gasteoen techniques are kept
calculational, which aids derivation. We prove soundnéssioframework by proving
theorems that relate our techniques to the LTL definitionstHermore, we introduce
several methods for proving progress using a well-founéé&tion, which keeps proofs

of progress scalable.

During program derivation, in order to ensure unspecifiedalm®ur is not intro-
duced, it is also important to verify a refinement, i.e., shbat every behaviour of the
final (more complex) program is a possible behaviour of tretrabt representation. To
facilitate this, we introduce the concept of an enforcedoprty, which is a property
that the program code does not satisfy, but is required ofitia¢ program. Enforced
properties may be any LTL formula, and hence may represehtdadety and progress
requirements. We formalise stepwise refinement of progsaitisenforced properties,
so that code is introduced in a manner that satisfies the@dqroperties, yet refine-
ment of the original program is guaranteed. We presentaksivs of several concurrent

programs from the literature.
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concurrency, refinement, verification, derivation, sagfetggress, liveness, formal meth-

ods, enforced properties, leads-to
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Introduction

The complexity of a concurrent program can grow expondyted the number of par-
allel processes increases. Due to possible interfereaoedther processes, slight alter-
ations to the program code can change the behaviour of camtyprograms dramati-
cally. Informal arguments to validate the correctness afrecarrent program are seldom

convincing and traditional testing methods are usualldatpate.

Formal methods provide a basis by which the validity of paogs can be made using
sound mathematical arguments. According to Manna and HiMR91a], using formal
methods to validate programs consists of two distinct butalyg challenging thought
processes: one must describe the appropriate set of foss@ttens (predicates on the
program state) for the problem at hand, then use these iassetd establish a set of

proof obligations which can be verified.



INTRODUCTION

1.1 Formal methods for concurrency

The two requirements that concurrent programs need tdysatissafety(the program
does not do anything bad) atigieness(the program does something good) [Lam77].
This distinction has developed extensively over time arsldeen expressed via a num-
ber of different viewpoints [Kin94]. For instance, AlperndaSchneider [AS85, AS87]
show us that topologically, safety properties el@sedsets and liveness properties are

densesets.

One of the first coherent methods of formally proving propsrof sequential pro-
grams was using the invariant method of Floyd [Flo67]. La#erare presented a method
of proving such invariants axiomatically [Hoa69]. Assenis that represent the desired
correctness criteria are used to annotate a program. Eijksén introducegredicate
transformerswith which one could devise and prove assertions in a moulzlonal
manner [Dij76]. Both Hoare-logic and predicate transfarsngere initially developed
to prove properties of sequential programs, and hencexeigxtensions are necessary
in the context of concurrency. A variety of formalisms mayused to reason about the

safety properties of concurrent algorithms [OG76, CM8&8%,TBac89a, Lam94].

The basis for proving liveness properties is temporal I§gru77, MP95], which is
an extension to classical first order logic that allows oneeson about properties that
change with time. Two main forms of temporal logic exist:elam time temporal logic
(LTL) and computational tree logic (CTL) [BAMP81]. The vigaken by LTL is that for
each moment, there is exactly one possible future, wheréasalows time to be split
into multiple paths representing the different possibtaeres. Lamport presents a com-
parison of the two views and supports the use of LTL over CTtancurrent systems
[Lam80]. The claim is that the expressive power of the twohuods are incompara-
ble, and hence there is no advantage gained by using the mongex CTL. Emerson
and Halpern, however, challenge this view, pointing outdégciencies in the argument
presented by Lamport [Lam80], and claim that although LTheserally adequate for
verification of concurrent programs, CTL does have appboatin systems where the

existence of alternative paths need to be acknowledgedgEHS



1.1 FORMAL METHODS FOR CONCURRENCY

Discussions of such notions of time remain outside the sobpi@s thesis. For the
most part, the sorts of liveness properties we are concevitbagre temporal ‘eventual-
ity’ properties, better known as progress properties.rtigwut that just a subset of LTL

is enough to prove such properties.

There are a wide variety of frameworks that allow formal cedsg about concurrent
programs. These may generally be classifiech@s-compositionabr compositional
[dRdABH"01].

1.1.1 Non-compositional methods

A method is said to be non-compositional if a proof of a congrarcannot be performed
by considering the component in isolation, i.e., the pregfuires complete knowledge
of the other components [dRdB191]. In this section we describe some of the more

popular methods.

UNITY. Developed by Chandy and Misra, UNITY aims to consider progdavelop-
ment with minimal assumptions on the target architectut§8]. Programs consist of
a collection of variable declarations and a finite non-engatlyof guarded commands.
Here, weak fairness is simplified to “each command is execuifnitely often”. A
UNITY program terminates if it reaches a fixed point. The tiyaga UNITY presents
an axiomatic definition of ‘leads-to’ which allows progrgs®perties known as ‘even-
tuality properties’ to be expressed without using temptmgic. However, one cannot
reason about a program’s control state easily and manyrexiieories for program de-
velopment and verification are not applicable [dRd®BH]. Furthermore, it is not easy

to introduce operators such as sequential compositiong8HR

TLA. Temporal logic of actions (TLA) is a body of work developed bgmport
[Lam94, LamO02] for the specification of systems. A specifaratonsists of a set of
formulae that describe the safety and liveness propetash formula describes a state
transition by referring to variables of the current and regate and may contain tempo-

ral operators. Because each action is a formula, refinemayntom expressed as logical



INTRODUCTION

implication.

Action systems. An important formalism is that of action systems [Bac89ac®a,

Bac92b] developed by Back, Sere, et al. The model is simdddNITY in that a

program consists of a non-terminating loop, where eachtitar non-deterministically
chooses an enabled guarded atomic action, however, thestioab background is quite
different. The idea is that when interleaving semanticsnpleyed, the semantics of a
concurrent system is no different from a non-determiniséiquential program. Hence
one can use a sequential program to model a concurrent sy§emantics of action
systems are described in a lattice theoretical frameworktioA systems have been
extended to fit many contexts such as reactive [Bac92b], coemt based [Ruk03],

distributed and shared memory [BS89].

[-O automata. Lynch and Vaandrager [LT89] developed the input-outpud)lau-
tomata formalism as a tool for modelling concurrent andrilisted discrete event sys-
tems. This work has been extended to model continuous sggi¢iiv03]. Each event
consists of an atomic effect that occurs takes place if tbgnam state satisfies its pre-
condition. Refinement in the context of I-O automata is dbscrin [LV95]. I-O au-

tomata have been used to verify non-blocking algorithmsQ&®GLMO04, Doh03].

Modular approach. Shankar and Lam [Sha93, LS92], present another state transi

tion model with automata-based syntactic constructs, Il a'semantics that follows
UNITY. Systems are represented as sets of state variabigal conditions, fairness re-
quirements, and events. The main difference with UNITY &t the modular approach
may specify different fairness assumptions on differetibas. The modular approach

was developed to reason about distributed protocols.

1.1.2 Compositional methods

Composition consists of building a system out of severallemaomponents so that

the combined effect of the components satisfies the regeinésyof the system [FP78].



1.2 ROGRESSBASED PROGRAM DERIVATION

Such methods are necessary for developing larger and momglew systems, however,

compositional methods do not necessarily reduce the compte a problem.

A component is treated as a ‘black box’ and each componentssribed by its
specification only. This means the composition of the coreptgineed not refer to the
program text. Properties of the component are describetsigpecification. A variety
of terms like rely-guarantee [Jon83], assumption-committfMC81], and assumption-
guarantee [JT96] have been used to describe compositieagbming. Collette and

Knapp [CK97] extend UNITY to a compositional framework.

Abadi and Lamport [AL93] describe the conditions under vahspecifications can
be composed. The theory is presented entirely at a semawgicusing transition traces,
which makes the work applicable to a number of other appreschi henon-cyclical
composition principles stated which describes when the composition of two spgeeifi
tions implements a program. Abadi and Lamport also desdrdve programs can be

constructed in a compositional manner [AL93, AL95].

1.2 Progress-based program derivation

The differences between Hoare and Dijkstra’s methods ame tian just superficial.
As Dijkstra showed, the calculational nature of predicedagformers is not only useful
for verification, but also in the context of program derigat{Dij76]. Essentially, this
gave rise to what is now known as the verify-while-developrapch, where, instead of
developing a program then proving it correct it post-ho® amms to produce a correct

program along with its proof to begin with.

While formally verifying concurrent programs has been thy@d of much research,
deriving them has not. Even less work has been put into deyieoncurrent programs
in a way that gives equal consideration to both progress afetysrequirements (as
opposed to derivation that is based only on safety requinésheThis thesis contributes
to this goal by defining a logic of safety and progress. We as@pply this knowledge
to address methodological questions of how to incorpohetéoic into a design method

for concurrent program derivation.



INTRODUCTION

The point of departure for this thesis is the theory of Owarkd Gries [OG76, Dij82,
FvG99], a theory that can only be used to reason about s&giyrements. Two reasons
recommend this point of departure. The first is that this e attractively simple.
Proofs are carried out using thdp predicate transformer and Hoare-style assertions
rather than some other programming model such as a Petri@eiitomaton, or process
algebra. We see this as an important advantage for prograignjevhere so much of
the practicality of model-based reasoning is dependantertransparency, ease and
reliability of the translation of the model into code. Theaed reason for using the
theory is that it has already been used as an effective methodncurrent program

derivation, although only safety requirements are forynatinsidered [FvG99].

The attitude of Feijen and van Gasteren is instructive imfibgard, as it represents a
deliberate decision to eschew the expressiveness of tafripgrc in favour of the sim-
plicity of Owicki and Gries. The benefit of doing so is a cotlen of design heuristics
that are attractively simple to use and have been shown téfdxtiee. The cost of the
decision is that reasoning about progress requirementsiesboth informal and post
hoc. Itis a welcome outcome that so much can be achievedsinvty, yet it remains true
that satisfaction of progress requirements using thisagagtr is in an important sense
left to chance. The pragmatic attitude of Feijen and van&ast together with the lim-
itation of the theory of Owicki and Gries, sets the methodaal agenda for this thesis.
That is, the thesis describes how to extend the theory of Khard Gries with a logic of
progress that, so far as possible, retains the simplicith@briginal theory while at the
same time provides a logic in which to formalise and provgpss requirements. This
work then is a prolegomenon to our larger goal, which is a oettf program derivation

that assigns equal consideration to both progress ang saftgtirements.

1.3 Formalising progress properties

Unlike sequential programs where the primary progress eonis ensuring termina-

tion, concurrent programs may exhibit a wide range of preg@operties. Blocking
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programs may exhibit properties such as deadlock, livetoak starvation, while non-
blocking programs may be classified according to their @sgproperties as wait, lock,
or obstruction-free. These terms are seldom defined foypaait hence their definitions

are subject to interpretation.

We formalise several of the progress properties concupr@grams may exhibit in
our framework. Formalisation of such terms has the advaritaaf they are precise. To
show that a property holds, one must prove that it satisfresi¢finition. Furthermore,
when a property does not hold, via the proof obligations gaed, one is able to identify

the types of modifications necessary for the program tofgdtie given property.

It is widely accepted that the progress properties of caeatiprograms are inter-
related, however, the precise relationships are diffioylitige, especially when fairness
is taken into consideration. By defining the progress pitiggeformally, we are able to
prove that the inter-relationships hold, e.g., in a norekieg context wait-freedom is

shown to imply lock-freedom, but not vice versa.

1.4 Some notation

For a set finite se$, we usesiz€S) to denote theardinality of S. Thecross producbf
two setsSandT is denoteds x T, and amappingwithin S x T is denoteds — t, where
s e Sandt € T. A relation RbetweenSandT is a set of mappingR C Sx T. We use
dom(R) andran(R) to denote thelomainandrangeof R. A function Fis a relation such
that (Vs y,yot X — Y1 € F AX— Yy, € F =y =Y,). A total function Ffrom Sto
T, denoted~: S — T, is a function such thatom(F) = Sholds, and gartial function
F from Sto T, denoted~: S -+ T, is a function such thatom(F) C Sholds. We use
S<R, R> S SgRandRe Sto denote thelomain restrictionrange restrictiondomain
anti-restriction andrange anti-restrictiorof relationR to setS, respectively. Given a set

of mappingdV, we useR @ M, to denoteR overridderby the mappings i.

A possibly infinitesequencef type T, denotedieq(T) is a function of typeN + T

where for anys € seq(T),

(Vijni <jAjedom(s)=ie dom(s)).
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Sequencsis infinite if dom(s) = N and finite otherwise. We use for sequence con-
catenation, i.e., provideslis finite,s " t is a new sequence consisting of the elements of
sfollowed by the elements daf We usg() to denote the empty sequencay, ay, . . ., a,)

to denote a finite sequence afad, a,, . . . ) to denote an infinite sequence.

For a finite sequencg we letsizes) = sizddom(s)) = maxs) + 1 be the number
of elements irs, last(s) be the last element is andfront(s) be a sequence such that
s = front(s) ~ (last(s)). For a (possibly infinite) non-empty sequericeve letheadt)

be the first element dfandtail (t) be the rest of, i.e.,t = (headt)) " tail(t).

1.5 Summary

In Chapter 2 we present a syntax and semantics of a framewonepresenting con-
current programs. Programs are written using Dijkstra’aidad Command Language
and consists of a number of sequential statements that eceitex in parallel. Program
counters are incorporated to the program in order to endueledntrol state, which is
necessary for our progress logic. We provide an operategrakntics to reason about
programs at a trace level, which is important to ensure soeswlof the model. Using

traces, we incorporate LTL into the framework.

In Chapter 3, we formalise weak and strong fairness, proaedinong fairness im-
plies weak fairness, and compare our definitions to thoseofdort. We also formalise
a number of progress properties of blocking and non-blarkimgrams, and prove the

inter-relationship among the different properties undgerous fairness assumptions.

In Chapter 4, we present calculation methods for verifyialgty and progress. We
provide a weakest (liberal) precondition semantics tovalt@lculational proofs that
facilitate program derivation. The weakest (liberal) mnedition is related to the op-
erational semantics. We present a logic for proving safaty @rogress by providing
definitions using LTL and the trace-based semantics. Thenpresent methods for
proving safety and progress using predicate transformersyithout resorting to LTL

reasoning. Our theorems for proving progress are able te wigh strong and minimal
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fairness. Further lemmas for proving progress using welhtied relations are provided

with a focus on program derivation.

In Chapter 5 we provide several example progress verifieataf both blocking
and non-blocking programs. We verify the initialisatiomfarcol [Mis91] under weak
fairness and minimal progress, and also consider a proofpobgram that satisfies its
safety property, but not its progress property. Asngorocess example, we present a
progress verification the bakery algorithm [Lam74]. We glszsent verifications of two
non-blocking examples: a program that is lock free but not fsee, and a program that

is obstruction free but not lock free.

In Chapter 6, using the trace semantics from Chapter 2, wediise the derivation
techniques of Feijen/van Gasteren and Dongol/Mooij arategheir methods to refine-
ment. Arbitrary program modifications are disallowed byuiegg that each program
modification be justified via lemmas that ensure the origpralgram is refined. Cen-
tral to this technique is the formalisation of queried pmies, which are redefined as
enforced properties. Enforced properties may represeht sadety and progress, and
restrict the traces of the program under considerationdsethhat satisfied the enforced

property.

In Chapter 7 we used the techniques from Chapters 4 and 6ive diee initialisation
protocol and three mutual exclusion algorithms: the safeslalgorithm, Peterson’s

algorithm and Dekker’s algorithm.
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The Programming Model

In this chapter, we present the programming model that we tHaveloped. We provide a
platform for the formal verification and derivation of com@nt programs, paying equal
attention to both safety and progress properties of theramag We base our model
on Dijkstra’s Guarded Command Language (GCL). Because @leWas developed to
model sequential programs, in the context of concurrengnaras, we are required to

implement the following changes:

e change the meaning dfso that it blocks when all guards dedse(as opposed to

aborting),
e introduce atomicity brackets (to allow greater controlieé aitomicity),
e define labels (to allow description of the control statel] an

e introduce program counters (to allow reasoning about tinérabstate).

11
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We provide an operational semantics for the language tbtédeicharacterisation of
state traces that specify a program’s behaviour. The usegalof this is highlighted in

Chapter 4 where we prove soundness of the logic in termsad-titeeoretic foundations.

This chapter is structured as follows. Section 2.1 dessribe syntax and seman-
tics of unlabelled statements; Section 2.2 gives an owereieatomicity brackets; and
Section 2.3 describes the syntax and semantics of labebéensents, as well as the
extensions necessary to reason about the control stateectio® 2.4, we describe the
concurrent programming model; and in Section 2.5, we defifle Within our frame-

work.

Contributions.  This chapter is mainly based on work done in collaboratidh Wioug
Goldson and lan Hayes [DG06, DHO7]. The operational serosanfithe programming
model (Sections 2.1.2 and 2.3.3) is from [DHO7]. The conadpdtomicity brackets
(Section 2.2) is well known, but the placement of bracketaiad guard evaluations
is from [DGO6]. Sections 2.3.1, 2.3.2 and 4.1.2 which fé&ié reasoning about pro-
gram control is from Dongol and Goldson [DGO06], while the @&i®nal semantics
(Section 2.3.3) and the formalisation of the execution m@8ection 2.4.2) is from
Dongol and Hayes [DHO7]. We use the operational semanticsstinguish between
concepts such as divergence, non-termination, guardsteamahation. We also show
that UNITY theorems for proving leads-to are actually moeaeyal properties of LTL
(Section 2.5.2).

2.1 A basic programming model

We present the syntax of the programming model in Sectior 2ahd the operational
semantics in Sections 2.1.2.
2.1.1 Syntax of unlabelled statements

Following the nomenclature of Feijen and van Gasteren [R}G8ur programming no-

tation is based on the language of guarded commands [Dij76].
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Definition 2.1 (Unlabelled statement)et X be a vector of distinct variable€ be a
vector of expressions that are assignment compatibleXyithbe a vector of non-empty
set-valued expressions where the type of the elemeMsaoé assignment compatible

with X andx is not free inV; and B, B, be Boolean expressions.

US == abort | skip | x:=E | X:€V | US;; US, | IF | DO
IF = if ], By — US fi
DO = doB— USod

The syntax of expressions is standard, and hence, we does#irthe details here. The
unlabelled statemengabort” may terminate in any state, or may never terminaséjg”
does not nothing,% := E” is the multiple assignmerthat simultaneously assigig to
variablex, for eachu € dom(X), and “x :€ V" is the non-deterministic assignmetitat
assigns an element fromto X. Execution ofUS;; US, (the sequential compositioof
US, andUS,) consists of execution &S, followed byUS,. Execution of arlF consists

of evaluation of guardB,, B, ..., B,, followed by execution oUS, if B, evaluates to
true. If two or more guards evaluate toue, then one of the branches is chosen non-
deterministically. If all guards evaluate talse the IF blocks, which is in contrast to
the semantics of Dijkstra where thHe is equivalent tabort when all guards evaluate to

false[Dij76]. Unlabelled statemeridO forms the standard looping construct.

2.1.2 Operational semantics

The values of the variables in a program define the prograorieit data state. We
define astate spacasXyar = VAR — VAL whereVARIs a set of variables andAL a
set of values. We leave out the subscriptARis clear from the context. Atateis a
member of. A predicateis a member of the s > = ¥ — B that maps each state to

true or false

To formalise our operational understanding of the languageprovide an opera-
tional semantics. In this thesis, we assume that each estpnes well-defined. Expres-

sion evaluation is represented by the function

evat > — (Expr — VAL)
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that maps each expression to the value of the expressior givhn state. To evaluate a

sequence of expressions, we may use the function
map (A — B) x seq(A) — seq(B)

which returns a sequence obtained by applying the givertiimto each element in the

given sequence.

Execution of an unlabelled statement is represented byritabelled statement exe-

cutionrelation
= (USx %) « (USx X))

which is the least relation that satisfies the rules in Fify. Pur definition of— uses
a small-step semantics [Plo04]. For vect®r&, we usex — E to denote the mapping
{Xy — Ei,...,Xn — En}, and® for the override operator, wheré @ g denotes the
mappingf over-ridden by mapping, e.g.,{X; — 10,% — 20,%3 — 30} @ {X; —
100, %3 — 300} = {x; — 100, % — 20, %3 — 300}.

Given thatx has typeT, the operational semantics is given below.

e = mapevalo, E)

|

u-abort us asgn
(abort, o) = (abort, ") =l (X:=E, o) % (skip,o @ {X 8})

(US, ) = (US},0)

- Il ; us
= Uss USno) - (US); USy,o) (s Gips Us o) 2 (US o)

4]

V=evaloV EcV evalo.B,
non-det — IF s
(X:€ V,0) — (skip, o0 & {X — &}) (IF,0) = (US,,0)
evalo.B evalo.(—B)
DO-loop = DO-exit =
(DO, J) - (US, DO, J) (DO7 U) I (Sklpa U)

FIGURE 2.1: Operational semantics of unlabelled statements

Execution ofabort results in an arbitrary post state. Multiple assignment E is

executed according to ruésgn where, for eacln € dom(E), given that each expression

E, in states valuates to value,, the state following the multiple assignment maps each
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variablex, to e,. Sequential compositiodS,;; US, executesJS, first using ruleseq-I,

but if US, is skip, uses ruleseg-Il so thatUS, may be executed. Notice thatWfS,

is skip, seg-l cannot be used becaugskip,c) ¢ dom(—). A non-deterministic
assignment is executed using ralen-det, whereV is evaluated i to obtainv, thenx

is mapped to an element, sayof v. Unlabelled statemenF is executed according to
IF whereUS, is executed iB, evaluates torue. Notice that no rule has been defined for
the case where all guards iR evaluate tdfalsebecause the program does not make a
transition, i.e., théF blocks. For aDO, if B evaluates tdrue, we execute&JSfollowed

by DO, otherwise thédO terminates.
An infinite execution of an unlabelled statement is definddvee

Definition 2.2 (Non-termination) Let US be an unlabelled statement anthe a state.
Thenon-terminatiorof (US o) is given by

-~

(US% U) US_OO) = (Els:seq(USXE) dOITl(S) =NA S = (US> U) A (vi:dom(s) S i) S—i—l))-

In order to determine whether or not execution of an unlabedtatement is possible,
we find the concept of guard useful. We use— to denote thaeflexive transitive

closureof 5.

Definition 2.3 (Guard) Theguardof an unlabelled statement US, denoted$, is the
weakest predicate that needs to hold for execution of US fmobsible. For a state,

the guard is defined as follows:

(Q.US).0 = (3,5 (US o) 2% (skip, o)) V (US, o) 5% .

When only considering safety properties, Feijen and varigeas have already de-
monstrated that knowledge of partial correctness is engegB99]. However, when
reasoning about progress (Chapter 4) and refinement (Gf@ptme is also required to

reason about termination.

Definition 2.4 (Termination) For an unlabelled statement US, tkerminationof US,
denoted 1US, is the weakest predicate that guarantees terminatidofFor a stater,

termination is defined as follows:

(tUS).0 = ~((US o) =),



16

THE PROGRAMMING MODEL

Note that by Lemma 4.5, predicatgd)JS andt.US may be calculated usingredicate

transformers

2.2 Atomicity brackets

An atomic statemenis a statement whose execution results in a single updateeof t
state of the whole program. The point between two consexaiomic statements is
known as aontrol pointwhich is a point at which interference may occur. Program exe
cution follows aninterleaving semanticg which the atomic statements are interleaved
with each other. This essentially reduces a concurrentranogo a non-deterministic se-
guential program [MP92] which is also the fundamental idelaiihd the execution model
in action systems [Bac89a]. Note that any two statementsdihanot conflict may be
modelled using interleaving semantics even if the timingheftwo statements overlap
[FVvG99].

To allow finer control over the atomicity of statements, we psirs ofatomicity
brackets ("and ‘). Thatis, given any stateme8texecution of statemex®) takes place
atomically and eliminates all points of interference wit8i We refer to such a statement
as acoarse-grained atomic statementWe assume thatkip, multiple assignment and

non-deterministic assignment statements are atomic. d4éme following hold:

(skip) = skip
(Xx:=E) = X:=E
x:€V) = x:€V.

We take the view that an atomic statement that blocks partirraygh its execution
is semantically equivalent to blocking at the start. Impdeation of such a statement is

possible usindpack-trackingNel89].

Atomicity brackets may also include guard evaluations. &@mple, in statement
if (B, — US)[(By — US,)) fi, evaluation of guardB, andB,, and execution of either
statementyJS, or US, (depending on which guard holds) takes place atomically. We

point out the awkward nature of our notation as the pair ofmaddy brackets suggest
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two atomic guard evaluations, however, this is not the casegaiard evaluation takes

place atomically. A more general form of statemints:

if [, (By — US) LS, fi

where all guard$,, . . ., B, are evaluated atomically, and depending on widgholds,
US, is executed atomically with the guard evaluation. Aftereaiesn ofUS, control is
transferred just beforeS,. Thus, there is no point of interleaving between evaluadion

B, and execution obUS,. Similarly, a more general form of statem@&m is:
do (B— US LS, od

where evaluation oB (and execution oUSif B holds) takes place atomically at every

iteration of the loop.

An atomic execution of an unlabelled statem&nhay either block, terminate or
not-terminate, and a single statement may exhibit all thregaviours. For example,

consider the following statement:

S = (ifb— skip fi;
if true — skip
| true — abort
fi ).
If =b holds, then stateme&blocks. Otherwise, execution &may either execute the
skip, in which caseS terminates; or executabort, in which caseS may or may not

terminate.

2.3 Labelled statements

In this section, we extend the model described in Sectiorm@dlprovide a framework
that allows full representation of program control. Due lte presence of atomicity
brackets, unlabelled statements re-appear in our progr@amaisthus the theory in Sec-
tion 2.1 is re-used. We describe the syntax of labelled stat¢s in Section 2.3.1 and a
method for modelling program counters in Section 2.3.2. dotf®ns 2.3.3 we give the

operational semantics of labelled statements.
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2.3.1 Syntax

To facilitate referencing of the control points, we assiggmaquelabel to each atomic

statement. We let the type of a label BE. Using labels to identify atomicity has
been also been suggested in formalisms such as +CAL [Laraf8]with extensions to
Event-B [EBO8].

Definition 2.5 (Labelled statement)_et B, B, be Boolean expressiong;be a vector of

variables; US, Ugbe unlabelled statements; and i, , k,lbe labels.

LS == i:abort | i: (US)j:| LS;; LS, | IF. | DO | X-[LS/]
IFL. = iiif |, (By— US) ka: LS, fi |:
DO, = i:do(B— US k:LS od j:

When we writei: LS, j:, we mean that the initial and final labels 0%, arei andj,
respectively. We make the labels explicit when they areeardrom the context. Note
that the final label of eachS, in IF_ is | and the final label oL.S, in DO, isi. The

labelled guard evaluation statementef may be referred to explicitly using
grd(IF) = ], ((By— US) k).

Similarly, the guard evaluation @O, may be referred to using:
grd(DO.) = i:((B— USk: (=B — skip)j:).

For the sequential compositidts;; LS, we require the final label dfS, to be equal to
the initial label ofLS,, otherwise the sequential composition is not well-fornfearther-

more, we use:LS;; j:LS, k: as shorthand for: LS, j:; j: LS, k:. For convenience, we
usex|LS;] = dotrue — LS od to denote an infinite execution of labelled statement
LS,. The statemerk-[LS,]| denotes the statemeln$, with its frameextended by vector
of variablesy, i.e., it behaves akS,, but in addition, may modifg (cf [Mor94]). Its

purpose is to allow fresh variables to be introduced to anamogduring the derivation

(see Chapter 6).

We define the function

labels LS — PC
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that takes a labelled statement as input and returns theé aktabels of the statement

except its final label. For instance,
labelqi: (US); j: (US,) k: ) = labelqi: (US) j: ) U labelqj: (US;) k: ) = {i,j}.

Thus, for every statementLS, j:, we requirg ¢ labelqi: LS j:).

2.3.2 Modelling program counters

We will be using labelled statements in a concurrent settitgere we think of labelled
statements as being executed byphecessesf a program. We let the type of a process

identifier bePROC

There are two ways of using the additional information tahelled statements pro-
vide. One way is to introduce newontrol predicatessuch asat(p, i) to express the
proposition that ‘control in procegs is at the atomic statement labelléd[Lam87,
Sch97]. A cost of this approach is that new axioms that captiue intended inter-
pretation of control predicates must be introduced. Lamp@m87], and Alpern and

Schneider [AS89] present axioms that express the following

(A1) Each process has exactly one active control point.

(A2) Execution of an atomic statement in a process diffefiarh p does not change

the active control point in procegs

The desire to make a conservative extension to the theorywaékband Gries has
led us to use auxiliary variables to reason about the costaie. Consequently, we
formalise a program’s control state by introducing an aaxjl variablepg, for each
processp in a way that models its ‘program counter’, i.e., the valuetto$ variable
indicates the active control point in the process (Al), Whig the label of the next
atomic statement to be executed. Program coypdgemust be updated at every atomic
statement irp in a way that assignsc, the final label of that statement. This is done by

superimposing an auxiliary assignmenptg on every atomic statement py(A2).
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Because every atomic statement in progeapdatesc,, explicitly mentioning up-
dates tqc, unnecessarily adds clutter to our programs. Hence, werdhe convention
that execution of each statement in progesaplicitly updatespg, to reflect the change
in control state. Furthermore, we add the restriction plegatmay not appear in any state-
ment. We reserve a special labelo be the label that denotes termination of a process,
l.e., if pg, = 7 for any proces®, thenp has terminated (does not execute any more

statements).

2.3.3 Operational semantics

When defining an operational semantics, an identity statéfoe sequential composi-
tion can be useful. However, we are unable to sis@ as the identity because it has
the property of updating the program counter. Hence, wedhite statemend in our

system with the following restrictions:

e id is the identity of sequential composition, i.el; LS, = LS, = LS;; id for any
labelled statemenitS,,

e the label before and aftél are the same, and

e id is only used to define the operational semantics.

Providing an operational semantics for our new programmiogdel is complicated
because we allow atomicity brackets around arbitrary wetlad statements. Due to the
interleaving semantics, if a procegexecutes a non-terminating atomic statement, no
other process is able to execute becgusever reaches a new control point. Yet, the
system is not totally deadlocked becapseontinues to execute and furthermore, there
may be other enabled processes in the system (that are to@&Bkecute). Thus, if a non-
terminating atomic statement is executed, we say the pmoggaiverged In order to
distinguish divergent behaviour, we introduce a specéatkst, known as thalivergent

stateand define

o= STu{1}h



2.3 LABELLED STATEMENTS 21

Because labelled statements are defined in terms of urgabstthtements, we first pre-

sent a semantics for the atomic execution of an unlabelddrsent. We define
L (USX X) X1

to be the least relation that satisfies the rules in Fig. 22 ag¢ume, o’ € >.

(US, o) =5 (skip, o’) (US o) =
(US o) o (US o) =1

FIGURE 2.2: Atomic statement execution

A terminating execution of unlabelled statemex@uses ruléerm, where given that
the reflexive transitive closure 6= results in(skip, o’), we obtain the state’. A
divergent execution ofUS o) uses rulediverge, which results in the divergent state
1. Labelled statements are executed using the familialoélled statement execution

relations
5, PROC— ((LSx ¥) « (LSx X))

which is the least relation that satisfies the rules in Figda2d 2.4. We assumeo’ €

3. For procesg, relationi>p represents a single step of executiop.in

We provide the operational semantics for labelled atonaitestents in Fig. 2.3. Ex-
ecution ofabort can generate both finitaljort-t), and infinite @&bort-nt) sequences
of arbitrary states. Note thatbort may also be viewed as an atomic statement, in
which case execution af abort diverges. Thusi: abort generates terminating, non-
terminating, and divergent behaviour. Terminating an@jing executions daf (US) j:
are described by ruleSG-t and CG-d, respectively. Similarly, execution of a guard
evaluation statement is described ®¥-t andGE-d. Given that guardB, evaluates to
true, the corresponding unlabelled statemels, is executed and the program counter
of processp is updated tck,. Note thatpc, = i must hold prior to executing atomic

statemenp;.

The rules for non-atomic labelled statements with emptynéa are straightforward
and are presented in Fig. 2.4, where rules are provided focKimg) conditional state-
ments (F-t, IF-d), sequential compositiors€q-1-t, seqg-I-d, seqg-11) and iteration DO-
|-t, DO-I-d, DO-II).
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Lot ot o) -y (i, o)

I@ (i-abort, ) —, (i:abort, o”)

@pi —i:(USj:  opp=i (USo)—o

(P, 0) —>p (id, 0’ © {pGy — j})

[ced] p=i:(US}: opg=i (USo)——]
(P o) —p (1)
p=i:], (Bu—US)ks) opg=i evaL(B,) (US,0)—o

GE-t

(P, 0) —~>p (id, o’ @ {pCy > ku})

pi=i:], ((Bu — US)) ku:) o.pG =1 eval, (By) (US,, 0) _t 1

Is

(pi,o) —p (1)
FIGURE 2.3: Labelled atomic statements with empty frames

(grd(IFL), o) -, (id, ") o’.pc = ky (grd(IFL), o) -5 (L, 1)
[IF-t] IF-d .

(IFL, o) =%, (LS, o) (IFL,0) =5 (1)

Is , i}
seq-I-t (LS, 7) —p (LS, o) @ (LS, 0) —p (1)

(LSi; LSy, 0) =5 (LS} LSy, o) (LSi; LS, 0) = (o, 1)

(grd(DOL), 0) =5, (id,0')  o’.pG, = k

Is /
@ (LS, 0) —p (LS,,0") @

(id; LSy, 0) ==, (LS}, ") (DO, o) -, (LS;; DO, o)
Is Is - / / _
(50-1-d] (gl’d(DOL),J)IS*m (1) 'oo] (grd(DOL), o) lei.d,g.) o' PGy = |
(DOL, o) 5 (L, 1) (DO, 0) -, (id, o)

FIGURE 2.4: Labelled non-atomic statements with empty frames

Execution of labelled statements with non-empty framesdaseribed in Fig. 2.5.
Execution ofx -[id] is equivalent to execution ad (rulefr-1). For any labelled statement
LS, # id with a non-empty frame, sa; if LS,, diverges, thex-[LS,] diverges (rule
fr-1l-d). Otherwise, execution &f-[LS, | consists of an atomic executionld$, followed

by a non-deterministic update xqrule fr-11-t).
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Given thatx has typeT, the operational semantics is given below.

Is ’ Is
(LSU) —p (LS70> I@ (LShU) —p (—aT)
(X-[id]; LS, o) ==, (LS, o) (X-[LSi], 0) 5 (1)

fr-1

Is / T i} T
[fr-11-t] (LSi,0) —>p (LS, 0") . (R:€T,0) (skip, o)
()_(-[[le]], g) —p ()—(.[[L%]]’ U”)

FIGURE 2.5: Labelled statements with a non-empty frame

Execution of a labelled statement diverges if some atonricqidhe labelled state-

ment diverges.

Definition 2.6 (Divergence) Let LS be a labelled statement in process p anthe a

state. Thalivergenceof (LS,, o) is given by
divergesLS., o) = (LS, o) =5, (L, 1)

Execution of a labelled statement is non-terminating if stegement diverges or if the

labelled statement itself is non-terminating.

Definition 2.7 (Non-termination) Let LS be a labelled statement amdbe a state. The

non-terminatiorof (LS, o) is given by

Isoco ~

(LS, 0) —p= divergesLS,,o) Vv

(Fseeatses) dom(s) = N A § = (LS, 0) A (Vadom(s S —p Susn):
Note that we distinguish between non-terminating and aimgptiehaviour of labelled
statements. An aborting labelled statement generatesaaybiinite and infinite traces,
i.e., if a labelledabort statement is executed, every behaviour of the program isrgen
ated. This is distinguished from non-termination of a l&xkektatement where either an
atomic part of the labelled statement diverges, or the lathstatement as a whole does

not terminate.

The guard and termination of labelled statement are defiadallaws.

Definition 2.8. For a labelled statement LL$n process p and state, we define:

1. (9LS).0 = (3, (LS, 0) =5 (id, 0")) V ~(t,LS)).0
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2. (t,LS).0 = ~(LS, o) =3,

By the operational semantics of atomic labelled statem@its 2.3), g,.pi must
imply pg, = i for every procesp and label € PC,,. We present a method for calculating

Op-LS, andt, LS, using predicate transformers in Lemma 4.10.

Lemma 2.9. Suppose LSis an atomic statement, p is a process, and’ are states,
then(LS,, o) = (LS,, o) A (t,.LS)).0 holds iff LS = id A o’ # 1 holds .

Proof.
(t,.LS).0
{LS, is atomic {definition oft,.LS, }
—divergesLS,, o)
{LS, is atomig
(30 0’ #1 A (LS, 0) = (id, o))
= {one-pointrulé
o' # 1A (LS, 0) =, (id, o) .

2.4 The concurrent programming model

Using the operational semantics from the sequential pastioprogramming language,
we formalise our execution model. We present the formalasyof a program in Sec-
tion 2.4.1; the execution semantics in Section 2.4.2, whliescribes a single step of

execution of a program; and the execution traces of a progré&action 2.4.3.

2.4.1 Syntax of a program

A program in our model is defined as follows:
PRGM = PPROCx PVAR X US x (PROC— LS

where

e Proc: PPROCIs a finite set of process identifiers.
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e Var: PVARIs a finite set of variables. Each variableMar may be:

— local to a process, sap, i.e., the variable cannot be read or written by any

process different frorp or

— shared i.e., the variable can be both read and written by any psorethe

program.

e Init: US which initialises the program, i.e., is executed beforg ater process
and is the only statement that may explicitly modify progi@unters. We assume
that.A.Init terminates for any progratd. We defineinitial (.4) to be the set of all

possible initial states oA, i.e.,

initial (A) = {0 |0 € Savar A (s (Alnit, p) 257 (skip, 0))}.

e exec: PROC— LSis a function that maps each process to the labelled statemen

that the process executes.

We definePC, = labelgexec(p)), which does not include, i.e.,7 ¢ PC, and

PCE =PC,U {7}
PC = Up;Proc PCP
PC™ = PCuU {r}.

We usep; to denote the atomic statement labeliéd exec(p). For any procesp, we

defineg,.p, = false i.e., once a process terminates, it becomes disabled pertia
For a predicat® and programA, we introduce the following notation:
(val P) = (vp:A.Proc(vi:ch P))
(Elf)‘il P) = (Elp:A.Proc(Eli:ch P))

Note that both(v;;' P) and(3; P) includep,.

2.4.2 Operational semantics

The state transition—p: & x X! represents a single step of execution of progeasd

—4:2 x X! represents a single step of execution in progtdniFig. 2.6). By rule
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proc, a process takes a step if a statement of the process is edeant by rulgar, a

program takes a step if some process in the program takep.a ste

(LS o) Lp (LS, o) pe AProc o <o

proc : par

/
0 —p0 0 =40

FIGURE 2.6: Execution semantics

2.4.3 Execution traces

We assume that programs at the very least satisfiymal progresswhere some enabled
process is chosen for execution, although the same proagbenrepeatedly chosen.
(See Section 3.1 for more details on fairness.) This gueearthat if there is an enabled

process, then there exists a transition to a new state. Weedefi
dseq(X) = seq(X) U{t|s€seq(X) Adom(s) #NAt=s" (1)}

to be the set of sequences that may or may not diverge. Ndte theergent sequence

must be finite and that only the last state may diverge.

Definition 2.10 (Minimal progress) A possibly infinite sequence of states gseq(X)

satisfieaminimal progressf

dom(s) # N = last(s) = T V =(F} (gp.p). last(s)). (2.11)

That is,s satisfies minimal progress iff eitheiis infinite, or no statement is enabled in

the last state of. For a set of natural numbeks we define
Kt =K - {0}.

Definition 2.12 (Trace) A possibly infinite sequence of states dseq(X) is atraceof
program.A iff
S € initial (.A) A (vu;dom(sﬁ Su_1 —A Su) (2.13)

Thus, in a trace of programd, says, the first state o must satisfy the initialisation

of A, and each successive state must be obtained from an exeofiicstatement id
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according to— 4. If a trace, sa, of A is finite, depending on the condition that the last
state ins satisfies,A either terminates (all processes have terminated), tetadldcks
(all processes are disabled and one or more processes haeemimated), or diverges

(a non terminating atomic statement is executed).

Definition 2.14(Terminates, Total deadlock, Divergediven a program4 and a trace

s of A such thatdom(s) # N,

1. Aterminatesn trace s ofA iff (Vp, 4.proc PG = 7). last(s)
2. A suffers frontotal deadlockn s iff (V4! =Gp.pi) A (3p.aproc PG # 7)) last(s)
3. Adivergesn siff last(s) = 1.

Definition 2.15(Complete trace)A trace s of a program is completaff

dom(s) # N = —(3,.5 last(s) — 4 o) holds.

Lemma 2.16(Finite trace) For a program.4 and complete trace s of, if dom(s) # N,

i.e., sis finite, the either terminates, total deadlocks, or divergesdn

Thus, a complete trace represents either a terminatirg), detidlocked, divergent,
or infinite execution of a program. For a progra#) we letTr.A denote the set of
all complete traces of the program. Because we use intémigaemantics, a divergent
execution of an atomic statement differs from a terminagixgcution. A divergent state-
ment does not cause total deadlock because a statememgsdxeicuted, however, no
other statements may be executed because the divergerhstdatdoes not terminate.
Note that a trace is only divergent if a divergent unlabellleence atomic) statement
is executed. Due to the existence of non-terminating caaotiprograms, an infinite

execution of a labelled statement is regarded as valid beiav
The next lemma states that a process that has terminatedstaynated in all future

states and a program that has terminated does not have any tates.

Lemma 2.17 (Program termination)For a program.A; process p<e A.Proc; and a

trace s ofA, the following hold:
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1. (\V/u:dom(s) (pCp - T)SJ = (VV:dom(S) \ Z u= (pcp = T)S\/))

2. (Vudom(s) (Vpaproc PG = 7).Sy = dom(s) # N A u = last(s))

2.5 Linear temporal logic

Within any formalism, there are several ways reason abautemporal ordering be-
tween states. For example, linear temporal logic (LTL) [MP@ach state has ex-
actly one successor) and computational tree logic (CTL)NB?81] (some states may
have more than one successor). Both views have their adyemtnd disadvantages
[Lam80, EH86] but in the end, the choice should be made on ahs f properties
one wishes to study [BAMP81]. We study properties that heterall execution traces

which makes LTL more appropriate.

2.5.1 Syntax and semantics

The partial syntax of an LTL formul@F is defined as follows, wher is a predicate

©e{NV,=> &}
TE=P | -TF | OTF | OTF | TRUTR | TRRWTER, | TR O TR |
(Y« TF) | (I« TF).
Definition 2.18(Temporal formula semanticsMP92] Let P be a predicate; F and G

be LTL formulae; s seq(X) be a sequence of states; andulom(s). We define:

(s,u) - = Ps

(s,u) = OF = (dom(s) # N = u# maxdom(s))) A (su+1)-F
(s,u) - OF = (Vvdom V>U= (SV) FF)

(s,u) - OF =  (Jvdom V=UA (SV)FF)

(SUWFFUG = (GudomsV>UA(SV)FGA (Vv (SW) FF))
(SUUFFWG = (su k- (FUG)VOF

SuFFoG = (SuFFoG

(Su) - (wF) = (W(sukF)

(Su - GxF) = Gx(sukEF).
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If F does not contain any LTL operators (i.e., is a predicat@n {s, u) + F holds iff
F.s, holds. We uses - F to mean(s,0) - F thus,s - OF iff all states ins satisfyF,
s i OF iff somestate ins satisfiesF, s = FU G iff there either exists a state githat
satisfiesG andF holds untilG does, ang - FW G iff s FU/ G or F always holds, in

which caseG may never be established.

Because a program may diverge, one may end up with a traceevidiselement is
1. If sis a divergent traces - OP is false (s, last(s)) - P = false, buts+ OGP may be
true if P is established befodast(s), ands - PW Q holds if P/ Q holds befordast(s).
For a sequencs, we definefront(s) to be all the elements of exceptlast(s), that is,

s= front(s) ~ (last(s)).

Definition 2.19. Suppose s« {t € dseq(X) | dom(t) # N A last(t) = T}. For LTL

formulae F and G; predicate P; and@ dom(s)

(suy P = u#last(s) AP.s,

(s,u) - OF = Uu# maxdom(s)) Au+1# maxdom(s)) A (su+1)FF
(s,u) - OF = false

(s,u) - OF = (front(s),u) - OF

(suyFFUG = (front(s),u)-FUG

(suyFFWG = (front(s),u)-FUG

SUFFoOG = (sukFFeG

(SUF(%F) = (%(su)kF)

(ssu bk (3F) = (Sx(su)k-F).

Definition 2.20 (Satisfiable, Valid) Given a set TC {s| s € dseq(X)}, an LTL formula
F is satisfiablén T iff (31 s+ F) holds andvalid in T iff (Vs1 st F) holds.

For a set of sequencds we use notatiom |~ F to denote that LTL formul& is valid

inT.

2.5.2 Leads-to

LTL makes it easy to specify progress properties, howevenipg that the specified

property holds can be difficult [Lam02]. The sorts of protve are concerned with
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are eventuality properties, which may be best stated usautg-to For LTL formulaeF
andG, and a tracss, if F leads-toG (denotedr ~~ G) holds ins, thenG is guaranteed
to hold eventually from any state that satisfiesWe will assume that- binds weaker
than—, A, andV. For example(P; A Py) ~ (Q; V Q) = P; A Py ~» Q1 V Qo.

However, we often leave in the brackets for clarity.

Chandy and Misra define leads-to over predicates withouguisTL, thus making
proofs of progress properties known as eventuality preggesgimpler [CM88, DGO6].
However, it is not easy to be convinced that the definitioreatls-to provided by Chandy

and Misra captures its intended temporal meaning [CM88, &G0

We define leads-to using LTL, which we relate to Chandy and&glefinition via
theorems and lemmas. This approach has a number of advant@gere able to prove
that many theorems for leads-to in UNITY are actually moreeggal theorems of LTL,
in particular, we show that two of the required conditionghia definition of leads-to
[CM88, DGO6] are theorems of LTL (see Theorems 2.22 and 2.83) relating the
definition of leads-to in UNITY to LTL, we obtain a proof of sodness. Furthermore,
while weak-fairness (see Section 3.1) is inherently assuim&NITY, we are able to
provide theorems for proving progress under minimal pregjand strong fairness (see

Section 4.3.2).

Definition 2.21 (Leads-to) For LTL formulae F and G, Heads-toG (written F ~~ G)
iff O(F = <©G).

The theorems for leads-to below are either from UNITY [CM88by Dongol and
Mooij [DM06, DMO08]. The following theorem states that one ynaroveF ~~ G by
finding an LTL formulaH for whichF ~~ H andH ~» G hold.

Theorem 2.22(Transitivity). For LTL formulae F and G, =~ G holds if for some LTL
formulaH,(F ~~ H) A (H ~ G) holds.

Proof.
(F~H)A(H~ G)
=  {definition of~}

OF = OH) A OH = ©G)
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= {distributeC}{(a=b) = (Ca= Ob)}
O((F = OH) A (OH = ©0G))

= {O0a = Oal{transitivity of =}
O(F = ©G)

{definition of~}
F~G 0O

The next theorem, in its finite application of, say, two pesg assertions, amounts
to the inference tha ~~ GandH ~ Giff (F v H) ~ G.

Theorem 2.23(Disjunction) For LTL formulae F and G, if F= (3w F.m), for some

set W, given that m does not occur free in G, thesFS iff (Vo F.m -~ G).

Proof.

(\V/m:W F.m~ G)

=  {definition of~}

(Vmw O(F.m= ©G))
{(Vxr OF) = 0(Ver F)}

OVmw F.m= ©G)

= {mnot free inG}
O((Fmw F.m) = OG)
{definition of~}{F = (Inw F.M)}
F~G o

Leads-to is monotonic in its left argument and anti-monmamits right argument
[MP92, DMO06].

Lemma 2.24(Monotonicity, Anti-monotonicity) For LTL formulae F, GandH, -~ G
holds if either of the following hold

Left monotonicity (F=H)A(H~ G)
Right anti-monotonicity (F ~» H) A (H= G).
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Lemma 2.25(Contradiction) For LTL formulae F and G,
F-~G = (FA-G)~ G

Proof.
F~G
= {left-monotonicity}
(FA-G)~G

= {definition of~}
O(F A -G = ©G)
=  {logic}
O(F = GV ©G)
= {a= <a}{definition of -}
F~G o

Chandy and Misra present a number of theoretical results~<fan the context of
UNITY [CM88]. It turns out that many of the properties theysdebe are more general
theorems of LTL, independent of the program under consiierarl hus, we reprove the

results of Chandy and Misra in the context of LTL.
Lemma 2.26(Implication). For LTL formulae F and G, ifi(F = G), then F~ G.

Proof.
O(F = ©G)
& {a= <a}
O(F = G)
=  {assumptioh

true ]

Note that if{[F = G| thenF ~~ G becauséF = G| = O(F = G).

Lemma 2.27(Cancellation) For LTL formulae F, G, H and D, if - (G v D) and
D ~~ H, then, F~ (G V H).
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Proof.

OF = <(Gv D)) ADO(D = OH)

=  {distribute¢}{a = <a}
O(F = ©G V ©D) A O(OD = OH)

= {distributeO}{logic}
O(F = OG V OH)

= {logic}{distribute®}
O(F = <&(GV H)) O

Lemma 2.28(Point-wise disjunction)Given that Fm and Gm are LTL formulae where

m ranges over a set Winw F.m) ~ (3w G.m) holds if (Vw F.m ~~ G.m) holds.

Proof.
(Vmw F.m~> G.m)
=  {Lemma 2.26 (implicatiorf{ Theorem 2.22 (transitivity)
(Vmw F.m~ (Fow G.N))
=  {Theorem 2.23 (disjunctioh]renaming
(Imw F.m) ~ (Fnw G.m) 0

Lemma 2.29(Induction) Given that M is a total function from program states to set W
and (<, W) is a well-founded relation, for LTL formulae F, G that do nointain free

occurrences of variable m, =~ G holds if
VmwFAM=m ~ (FAM=<m)VG). (2.30)

Proof. Our proof is identical to that of Chandy and Misra [CM88, pg/]. The induc-
tion principle for well-founded sets, sd¥, is given below wher&,, is a formula with

free variablen, andW | m= {n|n€ W A n < m}.
(vmzw(vn:WJm Rn) = Rm) 3 (vm:W Rm) (2-31)
ChoosingR, to beF A M = m~~ G, we have:

(vm:W(vn:WJm FAM=n~ G) = (F AM=m-~ G)) = (2.32)
(vm:wF AM=m~ G)
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Also, (2.30) may equivalently be written as

VmwFAM=m~ (GowFAN=MAN=<mM) VvV G) (2.33)

We have the following calculation:

(vm:W \_(vn:WJm FAM=n~ G)J

= {Theorem 2.23 (disjunctioh)

le (GawmFAM=n)~G

& {G~ G}
GrwmF AM =n)V G~ G

< {definition of W | m}
(FswFAM=nANn<m VG~ G

= {(2.33)}{Theorem 2.22 (transitivity)
FAM=m~ G)

= {32}

- (VmwFAM=m~ G)

=  {Theorem 2.23 (disjunctiof)
(GmwFAM=m)~ G

=  {assumptionmis free inF}
FA@mwM=m) ~ G

= {one point rulé
F~G

The basis of Lemma 2.29 (induction) is to find a total functieeyM, whose values
range over a well-founded set, s@y, W). If for every possible value dff, either the
value ofM is eventually reduced (with respect te, W)) or Q is established, the®
must eventually hold. This is because, W) is well-founded, hence, any value bf

may only be decreased a finite number of times.
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2.6 Conclusion

In Section 1.1.1, we have seen several event-based modelsyér, in general, each
of these is essentially do od program with a non-deterministic choice over all pos-
sible program statements. Such models may be distinguisbedthe model we use,
where concurrent programs are modelled as a number of segjugncesses executing
in parallel [OG76, AO91, FvG99, DGO06]. Our language is basedijkstra’s Guarded

Command Language which we have extended with atomicityketa@nd labels.

The model we have defined allows more general synchronmsataiements to be
defined. Owicki and Gries [OG76] and Apt and Olderog [AO91d\ypde synchronisa-
tion via blocking atomic statements of the foawait B then S end, (which is equiv-
alent to(if B — S fi) in our model) whereS is not allowed to contain any loops or
await statements. Feijen and van Gasteren [FvG99] tighteneddkigction even fur-
ther and the only allow synchronisation via tgearded skipi.e., a statement of the

form: (if B — skip fi).

We have also incorporated program counters into the modalhwénables us to
reason about a program’s control state. We provide an apeehtsemantics, which
facilitates trace-based reasoning using LTL. Chapter 3ahstnates the usefulness of

LTL in formalising and specifying progress properties.

In contrast to models such as CSP [Hoa85], our programmirgghunes not allow
dynamic creation of processes. This is not a problem for gravations in this thesis.
However, code that creates new processes dynamically caeMetoped by introducing
an indexed set of processes, gagyn and initialising the system so that each process
in p_dynis blocked. At the point in which a process, ggydynamically creates a new

processp simply unblocks the process jmdynwith the smallest index.
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Formalising Progress Properties

Many terms such as deadlock and starvation freedom are aisiedine the general prog-
ress properties that concurrent programs may exhibit. Kewyéhese terms are usually
defined using natural language and hence their exact meaambge ambiguous. Fur-
thermore, without formalisation, proving that a programisses a given property is
difficult. We may classify concurrent programs as blockisgnchronisation is achieved
via guarded blocking commands) and non-blocking (syndkation is achieved using
atomic non-blocking compare-and-swap hardware prinsliveUsing the framework
from Chapter 2, we present formal definitions of various pesg properties of con-

current programs.

The progress properties of concern in a blocking programratieidual progress
starvation individual deadlocktotal deadlockand livelock whereas in non-blocking

programs, one is concerned wiVait, lock and obstructionfreedom. Given that we

37
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have incorporated LTL into the framework, and that LTL alsoprogress properties to be
specified, we present our definitions using LTL. We also dgierelationships between
the different progress properties and present lemmas #satithe the conditions under

which the properties hold.

We formalise weak and strong fairness, which allows us tdi@Hp state the fair-
ness conditions assumed by each theorem. Thus, we are givlestnt different proof
obligations depending on the type of fairness assumed. €funitions of weak fairness
is equivalent to that of Lamport [Lam02], however, our sgdairness definition allows
us to establish a more intuitive relationship between weakstrong fairness than Lam-
port. In this chapter, we will assume an absence of divergeine., that each atomic

statement in the program terminates.

This chapter is structured as follows. We define fairnessdatiBn 3.1; present
progress properties of blocking programs in Section 3.8;mogress properties of non-

blocking programs in Section 3.3.

Contributions. We formalise weak and strong fairness and show that our tefini
of strong fairness implies weak fairness. Thus, we obtaigtddr relationship between
strong and weak fairness than Lamport [LamO02]. Apart frotaltdeadlock, formal def-
initions of the progress properties and the relationshgte/éen the properties have not
been provided in the literature. Sections 3.1 and 3.2 havbe®n published elsewhere.
Section 3.3 is based on [Don06a]. However, the presentatifibon06a] is based on
the progress logic from [CM88, DG06], where weak fairnesalerently assumed. In
[Don06a], because the weak fairness assumption is toogstneimimal progress had to
be modelled by taking process failure into account. In tlhiapter, we use the logic
from Section 2.4.2, which facilitates reasoning under madiprogress, and thus simpli-

fies our definitions.
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3.1 Fairness

In this section, we use the theory from Chapter 2 to formalisakandstrongfairness.
Fairness is used as an abstraction of the scheduler, thers ef scheduling choices
betweernprocesses, as opposed to fair chaigthin a process. Thus, for example, the
fairness constraint does not affect execution of staterhémte — S, | true — S, fi, i.e.,

a non-deterministic choice betwe&nandsS,. However, given a concurrent execution
of two processes sgyandq, the fairness constraint can affect which of these prosesse
is chosen for execution. Stronger fairness assumptiongrcable us to prove stronger

progress properties about a program.

Informally, weak fairness guarantees that a statementdttaintinuously enabled is
eventually executed, while strong fairness guarantedsatinastatement that becomes
enabled infinitely often is eventually executed. Our defing are closely related to the
formalisation given by Lamport [LamO02], however we strdregt the definition of strong

fairness to establish a more intuitive link between weakstrehg fairness.

Definition 3.1 (Weakly fair). For a programA, a trace sc Tr..A is weakly fairiff WF(s)

holds, where

WF(s) = (V' sk O0-gy.p). (3.2)

Thus, for a program, traces is weakly fair iff for each statg, and statemer;, there
is a future states, such that either control gf is not atp;, or control is afp; but p; is

blocked from execution. Condition (3.2) may equivalentydxpressed as:
(Vi s —00g.pi).

That is, for allp;, it is not the case that is eventually forever gb; and the guard op;
holds.

Definition 3.3 (Strongly fair) For a program.A, a trace s€ Tr.A is strongly fairiff
SF(s) holds, where

SF(S) = (VskO(00gp = O(pe #1))). (3.4)
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Thus, traces is strongly fair iff for everyp;, if from any statep; always eventually be-
comes enabled, then eventuglly, # i holds (which meansg; is executed). Lamport

gives the following alternative definition for strong faass [LamO02]:

(Vo sk 000Gy p = OO (pg, #1)) (3.5)

We can show that our definition of strong fairness is equivaie Lamport’s defini-

tion using the following lemma.
Lemma 3.6. For any process p and labeki PC, (3.4) is equivalent to (3.5).

Proof.
D(OCg.pi = (PG # 1))
O(CO(=gp-pi) V O (PG, # 1))
=  {distribute®}
OO(O(=Gp-pi) V (PCo # 1))
{O¢(avVv b) =0CaVv OOb}
OOC0(~gp-pi) V OO(pG, # i)
{O¢D0a = ¢0a}
QO(=gp.pi) V OO(pg # 1)
OOGp.pi = OO(pe, # 1) 0

Lamport does not show that (3.5) implies (3.2) [LamO02, pdl0a&stead, Lamport

shows that weak and strong fairness are equivalent iff
(V4 st OO=gp.pr = OO=gp.p V OO (PG, # ). (3.7)

This result is not very useful because the antecedent ofpéadation is (3.2) and the
consequent is (3.5). So, according to Lamport, weak andgti@rness are equivalent

if weak fairness implies strong fairness!

We do not believe that this should be the case, i.e., strongefss should indeed
be a stronger condition than weak fairness. We prove thigitrés our definitions

(Definitions 3.1 and 3.3) in Lemma 3.8 below.

Lemma 3.8(Fairness)
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1. Every weakly fair trace satisfies minimal progress (D&bni2.10).

2. Every strongly fair trace is weakly fair.

Proof (1). The proof is trivial because every weakly fair trace is a clatgtrace of the

program and every complete trace of a program satisfies ralmpmgress.

Proof (2). We have the following calculation for any procgss= .A.Proc and label

i € PC,,. We use the property thg.pi = pg, =i, i.€.,pG # i = Gp.pi.

D(OCg.pi = (PG # 1))
= {logic}{-Ox = &—x}{-Ox = O—x}
O(CO0=gp.pi V O(pG # 1))

{< is distributive overv }
OO(0gp.pi V PG # i)
= {Ox=x}

OO (=Gp-pi V PG # )
= {pG #i= 0, pi}

D<>—|gp.pi

Thus, each strongly fair trace is also weakly fair. o

Definition 3.9 (Minimally fair traces, Weakly fair traces, Strongly fanates) For a
program.A, the sets ominimally fair tracesweakly fair tracesand strongly fair traces

are given byTrye, Trwr, andTrsg, respectively, where:

TrMF.A = TrA
Trwe. A = {s|seTr.AANWF(s)}
Trsr A = {s|seTr.AA SF(9)}.

Distinguishing betweefirygs.A, Trwr. A, andTrsg. A allows us to describe lemmas that
provide differing conditions under which a progress propenight hold based on the
progress assumption at hand. For example, given a LTL famwnd programA, if
Trwe.A = F holds, therF holds for each weakly fair trace of, butF need not hold for
Trve. A.

Definition 3.10. We sayF is afairness assumptiaff F € {MF, WF, SF}.
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3.2 Blocking programs

In this section, we formalise the progress properties ofloteg programs and explore
the relationships between the different properties. Wendefidividual and total dead-
lock in Section 3.2.1 and define individual progress andvatam in Section 3.2.2. In
Section 3.2.3, we describe the concept of a progress fumotvbich is then used to
define livelock. (Progress functions are also used to deffiagtogress properties of
non-blocking programs in Section 3.3.) In Section 3.2.4 vesent example uses of our

definitions.

3.2.1 Deadlock

Deadlock describes the phenomenon where one or more pesabss have not yet ter-
minated are blocked forever. There are two forms of deadlaw#tividual andtotal.
Individual deadlock is a local condition where a single msxcthat has not terminated is
blocked forever, and total deadlock is when all process#siprogram are blocked for-
ever. Apt and Olderog [AO91] only define total deadlock wikigjen and van Gasteren
[FvG99] distinguish between individual and total deadloleldt do not present formal

definitions of the two terms. We remind the reader that PC,, for any procesg.

Definition 3.11 (Individual deadlock, Individual terminationf process p= .A.Proc in
program.A suffers fromindividual deadlockn trace se Tr.A4, iff IndDeadp, s) holds
where

IndDeadp,s) = (Jipc, Sk CO(PG =i A —Gp.pi)).

That is, a procesp suffers from individual deadlock ifp reaches a label # 7 from

which p remains disabled permanently. For a tra@ad procesp, we define
Termp,s) = sk O(pg =1).

We recall that we assume absence of divergence for thisehdjuttal deadlock for
a tracesand progranm4 has been defined in terms of the last stateinfDefinition 2.14,
whereA suffers from total deadlock igiff (V' —Gp.pi) A (Fp.aproc PG # 7)). last(s)

We present an alternative technique for proving total dezdbelow.
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Lemma 3.12(Total deadlock) Program.A suffers from total deadlock in tracesTr..A

iff TotDead s) holds where:
TotDeads) = (Vp.4.proc TEIMP,S) V IndDeadp, s)) A (Ip.4proc INdDeadp, s)).

Proof (=). If s satisfies total deadlock as defined in Definition 2.44s finite, and
hence(V;' —gp.pi). last(s) holds, which implieg ¥y, 4 proc Termp,s) Vv IndDeadp, s)).
BecauseA suffers from total deadlock i, (3,..4.pr0c PG # 7). last(s) holds, and hence

(Jp.a.proc INdDeadp, s)) must hold. O

Proof (&). BecauséV. 4proc TErmp, s) V IndDeadp, s)) holds,sis finite (i.e.,last(s)
is well defined). Becausee Tr.A andsis finite, (V4 —gp.pi). last(s) must hold. Due to

(Elp:A.Proc IndDeac{pa S)), Condition(ﬂp:A.Proc PG 7£ T)' laSt(S) must hold.

That is, a programd suffers from total deadlock in tracseiff each process ofd either
terminates or suffers from individual deadlocksirand at least one process suffers from
individual deadlock. Note that ifotDeads) holds, thers s finite. We may lift these

definitions to sets of traces as follows.

Definition 3.13. For a program.A and fairness assumptiof, process pc A.Proc
suffers fromindividual deadlockunderF iff p suffers from individual deadlock for some

trace se Tre. A, i.e., (Js7,..4 INdDeadp, s)).

Program A suffers fromtotal deadlockunder fairness assumptidniff A suffers from

total deadlock for somes Tre. A, i.e.,(Jsm..4 TotDeads)).

Next, we present a number of lemmas that describe how ddachode avoided. We
aim to provide conditions that may be proved in the same nraama [DG06, CM88],

i.e., by considering the program statements as opposeditoieig state traces.

Lemma 3.14(Avoid individual deadlock) For a program.A, process pe A.Proc is

devoid of individual deadlock in traces Tr. A if:

(Vipc, SF OO(pG # 1V gp.i)).

Proof. Trivial becaus€Y.pc, sk OC(pG, # iV gp.pi)) = —IndDeadp, s).
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Thus, a process is devoid of individual deadlock if for ev&@atemenp; it is always the
case that either control gfis eventually not ator p; becomes enabled. The next lemma

outlines a number of possible ways of avoiding total deddloc

Lemma 3.15(Total deadlock (2)) For a program.4 and trace sc Tr..4, -TotDeads)
holds if any of the following hold:

1. dom(s) =N
2. sk 0O(3 go.pi)
3. dom(s) # N A (Vp.aproc (PG = T7).1ast(s))

Proof (1). By Definition 2.14, ifTotDeads) holds, thenlom(s) # N, i.e.,sis of finite
length. By contrapositive, lom(s) = N, i.e.,sis of infinite length, then-TotDeads)

must hold.

Proof (2).
st 0(3; g.pi)
= {definition of O}
(vu:dom(s) (El.[/)éll gppl)&l)
= {sis acomplete trage
(\V/u:dom(s) Sy —a S.H-l)

=  {definition of trace

dom(s) = N
= {part (1) of Lemma 3.15 (total deadlock ())
—TotDeads)

Proof (3). Becauselom(s) # N, last(s) is well defined, and

(Vp-aproc (PG = 7).last(s))
= {7 ¢PCp}

(Vpa.proc —IndDeadp, s))
= {logic}

—(Jp.aproc INdDeadp, s))
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= {definition of TotDeads)}
—TotDeads)

Thus, a program is devoid of total deadlock in tradé (1) s is infinite, (2) for each
state inran(s), there is some process that is enableds(8)finite and all processes are
terminated in the last state ef Note that a consequence of part (3) of Lemma 3.15 is

that total deadlock does not exist if all processes are teatimg ins, i.e.,

(vp:A.Proc Term(p,s)) = —TotDeads).

3.2.2 Individual progress and starvation

The simplest form of progress isdividual progresswvhere a process makes progress
whenever a statement in the process is executed. If a prgcesscuting a non-atomic
loop, individual progress only guarantees that statemeitksn the loop are executed,
but not that the loop terminates. Closely related to indiidporogress is the concept
of starvationwhich describes the phenomenon where a process that alveapsnes
enabled is never chosen for execution. Note that starvataonot occur in the presence
of strong fairness (see Lemma 3.22). Although we presendéfieition of individual
progress and starvation together, we note that absencaredson does not guarantee
individual progress, however individual progress does@ntee absence of starvation

(see Corollary 3.20).

Definition 3.16 (Individual progress, Starvationp process pe A.Proc in program.A

satisfiedndividual progressn trace s< Tr..A4, iff IndProg(p, s) holds where
IndProg(p,s) = (Vipc, SFOO(PG # 1))
and suffers fronstarvationiff Starvep, s) holds where

Starvép,s) = (dipc, SF CO(PG = i) A OOG,.pr).

That is, a program satisfies individual progress, iff forrepcreached by process

p, control of p eventually gets pagi. A process suffers from starvation in traséf
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there is some labelsuch that eventuallgc, = i holds forever, yep; always eventually
becomes enabled. The definitions of individual progressstanation may be lifted to

sets of traces as follows.

Definition 3.17. SupposeA is a program under fairness assumption FgpA.Proc is

a process.

Then, p satisfiemdividual progress unddf iff (Vs 4 INdProg(p, s)) holds i.e., p sat-

isfies individual progress in every tracessTrg. A.

Similarly, p suffers fronstarvation undeF iff (3. 4 Starvép, s)) holds, i.e., p suffers

from starvation in some traces Tre. A.

We may lift the definitions of individual progress and staiwma once more to pro-

grams consisting of sets of processes as follows.

Definition 3.18. A program.4 under fairness assumptidhsatisfiesndividual progress

iff every process g A.Proc satisfies individual progress under

Program A under fairness assumptida suffers fromstarvationiff some process &

A.Proc suffers from starvation undét.

Thus, to show thatl under fairness assumptiérsatisfies individual progress, one must
show that every process satisfies individual progress iryevace withinTryr..A. On
the other hand, to show thal suffers from starvation, one must show that some process

of A suffers from starvation in some trace withige..A

Absence of starvation or absence of individual deadlock aimply individual
progress. However if both starvation and individual deekilare absent, then there must

be individual progress, which is highlighted by the follogilemma.

Lemma 3.19(Individual progress)For a program.A; process pe A.Proc; and trace
se Tr. A,

—Starvép, s) A —IndDeadp, s) = IndProg(p, S).

Proof. Suppose € A.Proc ands € Tr. A.
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—Starvép, s) A —IndDeadp, S)
=  {by definitions ofStarveandIndDead} {logic}
(Vipc, SEOO(pep # 1) V OD-Go.pi) A (Vipc, SE OO(pG # 1) V OO(gp-pi))
= {logic}
(Vipc, SF OO(pG # ) V (OO=gp.pi A OOGp.i))
=  {logic}{definition ofIndProg}
IndProg(p, S) 0

We obtain two immediate corollaries that identify the relaship between individual
progress and individual deadlock, and between individuagess and starvation. Note
that the opposite is not true, i.e., the absence of starvdtes not guarantee individual

progress.
Corollary 3.20. For a programA; process pc A.Proc; and trace s Tr..A, both of the
following hold:
1. IndProgp, s) = —Starvép, s)
2. IndProgp, s) = —IndDeadp, s)
That is, if p satisfies individual progress sithen,p does not suffer from starvation or

individual deadlock irs. It is straightforward to lift Corollary 3.20 to sets of tes; and

then to programs if necessary.

We can use the following lemma to show total deadlock is aaabiidl there exists a
process that does not terminatesiand makes individual progress snor all processes

make individual progress is

Lemma 3.21(Total deadlock (3)) For a program.4 and trace sc Tr..4, -TotDeads)
holds if either:

1. (Jp.aproc ~Termp, s) A IndProgp, s)), or

2. (Vp.aproc INdProg(p, s)).
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Proof (1).

(Fp.aproc —TErmp, s) A IndProg(p, s))

= {Corollary 3.2¢
(Fp.aproc " Termp, s) A —IndDeadp, s))

= {logic}
—(Vp.aproc TErMp, s) V IndDeadp, s))

= {Lemma3.12
—TotDeads) O

Proof (2).

(Vp.4.proc INAProg(p, s))

=  {Corollary 3.20}
(Vp.a.proc ~INdDeadp, s))

= {logic}
—(Jp.a.proc INdDeadp, s))

= {Lemma3.12
—TotDeads) 0

Note that part 1 of Lemma 3.21 (total deadlock (3)) impliest thhe traces is infinite
because there is a process that does not terminate and awegges some statement.
On the other hand, part 2 may hold for finite and infinite trasesausdndProg(p, s)

holds if p terminates irs.

Under strong fairness, absence of individual deadlock isvatent to individual

progress, while each process in every trace is starvatean fr
Lemma 3.22(Individual progress and starvation under strong fairheSsr a program
A; process pe A.Proc; and trace s Trsg. A,

1. —IndDeadp, s) = IndProg(p, S)

2. —Starvép, s)

Proof (1). Supposes € Trse. A is a trace andg is a process. By Corollary 3.20,
IndProg(p,s) = —IndDeadp,s). We prove the implication in the other direction as

follows.
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—IndDeadp, s)

=  {definition ofIndDead}{logic}
(Vipc, SEOO(PG # 1V Go.pi))

= {O0¢(avb) =0dav Oob}
(Vipc, SF OO(pg # i) V OOg,.pr)

= {Lemma3.6{sc Trsr.A}
(Vipc, SE OO(pe # 1))

=  {definition ofIndProg}
IndProg(p, S)

Proof (2).
—Starvép, s)

{definition of Starve {logic}
(Vipc, SF OO(pg # i) V OO—Gp.pi)
&  {(@B8.5)

true ]

3.2.3 Progress functions and livelock

Individual progress ensures that a process does not stdfardtarvation and individual
deadlock by guaranteeing that a process always executeseansnt. However, exe-
cution of a single statement is not always considered to &epregress. For instance,
the progress requirement might be that a process exits tethat is currently being
executed. In general, progress occurs from a particularalquoint if one of a number
of control points is eventually reached. Furthermore, th&mol points that need to be

reached often require more than one statement to be executed

To formalise real progress in a procggssve may use @rogress function
II: Proc — (PC, — P(PCE))

which, given a label returns a set of labels. We say propesakes progress according

to II.p from a state that satisfigss, = i if pg, € IL.p.i eventually holds. Note that
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7 ¢ dom(Il.p), because it does not make sense to define progress for a ateghin
process. Furthermore, for evarng dom(I1.p), we require that ¢ I1.p.i holds, i.e., at

least one statement pfmust be executed fqrto make progress accordinglib

Let us consider an example. For a programprocesp <€ A.Proc, andi € PC,
supposdl.p.i = {j, k}, i.e.,p makes progress from control poinif p reaches control
pointj or k. Now, if pg, =i ~» pc, € IL.p.i holds, i.e.pg, =i ~ pg, € {j, k}, thenpis

guaranteed to make progress when@ggr= i.

A process suffers from livelock if the process is enabled stade, yet the process

fails to make real progress from that state.

Definition 3.23(Livelock). A process pe A.Proc in program.A with progress function
IT suffers fromlivelock in trace s € Tr.A iff =IndDeadp, s) and LivelocKp,s) hold

where:
LivelocKp,s) = (Jipc, Sk O(pG =1 A O(pg & ILp.i))).

That is, procesp suffers from livelock iffp does not deadlock and there exists a label
i that is reached such that progress does not occur ifraffe may lift the definition of

liveness to programs and sets of traces as follows.

Definition 3.24. A program.A under fairness assumptidn suffers fromlivelock if A

suffers from livelock for some tracessTrg. A.

3.2.4 Anexample

We now relate the definitions above to the example programgn31. We assume
that each process that terminates makes progress, whichmslised by the following

progress function:
(\V/p:{xy} (Vi;pcp le = {T}))
We are assuming that variablesndc are shared by processéandY.

Example 3.25(Individual deadlock Process in the program of Fig. 3.1, suffers from

individual deadlock becaug®, = 1 ~~ c does not hold.
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Init: pcx, poy, b, ¢ := 1, 1, true, false

ProcesX |Processy

l:dob— |1:ifc—

2: skip |2: b:=false
od; fi

3: Cc:=true|T:

7: {c}

FIGURE 3.1: Example program

Example 3.26(Individual progresy ProcessX satisfies individual progress because
processy suffers from individual deadlock, and furthermofpex = i = gx.X | holds
for all i # 7. Processr does not satisfy individual progress simog = 1 ~ pcy # 1

does not hold.

Example 3.27(Starvatior). Processy cannot suffer from starvation becausegy.Y;
does not hold. Processdoes not suffer from starvation becavésatisfies individual

progress.

Example 3.28(Total deadlock We prove that the program in Fig. 3.1 does not suffer
from total deadlock using part (1) of Lemma 3.15 (total deakl(2)). We may perform
case analysis on the values mdy. For casepcx € {1,2}, total deadlock does not
exist becaus¢pcy € {1,2} = 0gx.Xp ] holds, whereas casgex € {3,7} may be

disregarded because such a state is never reachedi(jpex, € {3, 7} holds.

Example 3.29(LivelocK. ProcessX suffers from livelock according to the given prog-

ress function becausédoes not terminate.

3.2.5 Discussion

We have formalised progress properties of concurrent progr We have presented
lemmas that describe the relationships between the vaoroggess properties. Lemmas
that help abstract away from the low-level definitions sa gragress properties may be

proved more easily are also provided. The relationshipsdxt the various progress
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properties are summarised below. For any progrmproces® € A.Proc; and traces

s e Tr.A andsf € Trse.. A we have:

IndProg(p, S)
IndProg(p, S)

—Starvép, s)
—IndDeadp, s)
IndProg(p, S)

Loy

—Starvép, s) A ~IndDeadp, s)

(Vgaproc TErMQ, S)) —TotDeads)
(Jgaproc ~Termq, s) A IndProg(g,s)) = —TotDeads)
(Vga.proc INDProg(q, s)) = ~—TotDeads)

Y

—IndDeadp, sf)
—Starvép, sf)

IndProg(p, sf)

To the best of our knowledge, liveness properties of corcipprograms have not
been formalised as we have done in this chapter. Lamport QRjhescribes a frame-
work suitable for specifying both safety and liveness progs, but apart from weak and
strong fairness, no other properties are defined. Feijervandasteren [FvG99], only

present an informal definitions of starvation, deadlock iadd/idual progress.

3.3 Non-blocking programs

In this section, we formalise the progress properties of-llocking programs. Ac-
cording to its progress property, a non-blocking prograny beclassified as wait-free,
lock-free or obstruction-free. Formal definitions of the=ens have not been provided in
the literature, and hence many interpretations are amhgand some are even incorrect
(see Section 3.3.2). We prove a progress hierarchy thatfveaitprograms are lock-free

(but not vice-versa), and lock-free programs are obstoefiiee (but not vice-versa).

In Section 3.3.1 we formalise non-blocking programs ancaides some extensions
to our programming model. In Section 3.3.2 we present a gurf/¢he informal defi-

nitions of the progress properties of non-blocking aldomnis provided in the literature.
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In Section 3.3.3 we present progress functions for nonkihgcprograms, and in Sec-
tion 3.3.4 we define wait, lock and obstruction freedom. Fyna& Section 3.3.5, we

relate the different definitions.

3.3.1 Formalising non-blocking programs

Definition 3.30. A program isnon-blockingiff
(Vo i# 7= [gp=pg=i). (3.31)

Non-blocking programs use primitives such as load-lingexté-conditional or compare-

and-swap instead of locks. Hence we define a non-blockinditonal ife as follows:

i-if ],(Bu — US) ku: LS,

i-ife | ,(Bu — US) ku: LS, _
el ) | (A8 — skip)

efi

IR

fi

which executes akip if each guardB, evaluates tdalse

Many real world programs do not specify each process dyrastbescribed in Chap-
ter 2. Instead, programs consist of a number of operaticaisath unspecified, finite
number of concurrent processes execute. For example, arseadters program con-
sists of reader and writer operations which are executediallgl by the processes in
the program. Thus, in the operation/process model, a pmpgsay.4, consists of a
finite set of operationsd.OP: A.Proc — LS each of which is a labelled statement
parametrised by a process. The operations are executedhifephy the processes from
A.Proc. Because the labels within a process need to be distinctegquare that each
label in each operation is distinct from the labels in allastbperations of the program.
The example program in Fig. 3.2, consists of a finite set ofggees, each of which may

execute either of the operationsacl, andinc100p.

A process may either bactive (is currently executing an operation) iolle (is not

executing any operation). An idle process becomes activenifokes an operation, and
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Init: pc, T := (A, proc idle), 0
incl, = inc100, =
€0: exit := false do: exit := false
el: do —exit, — d1: do —exity —
€2: tp:=T; d2: tp:=T;
e rpi=ty+1; d3:  rp:=ty+ 100;
el: ife(T=t,—>T:=r1p) d4: ife(T=t, = T:=rp)
€b: exity := true ds: exity := true
efi efi
od od

FIGURE 3.2: A non-blocking program

an active processes becomes idle if the operation it is mtlyrexecuting completes.
Thus, each procegse A.Proc is a loop that non-deterministically chooses and invokes
an operation at each iteration of the loop, i.e., each peges .A.Proc for a non-

blocking programA is of the form:
q = «[idle:if [, 4 op true — opy fi]

whereidle is a special label used to distinguish idle process&oces is idle iff

pc, = idle. Each procesg of the program in Fig. 3.2 takes the following form:

IR

i
idle: if true — incl,
| true — inc100q
fi
]

Although the number of processes in the program is finite néiniie number of oper-
ations can be invoked because each process can cycle firetvezen idle and active

states.

10One could choosklle to be a set of labels, but this is not necessary for the pusgmafgbis thesis.
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3.3.2 Informal definitions

We now present a survey of the definitions of wait, lock androiction freedom given in
the literature. This allows us to highlight the differeneesl ambiguities introduced via

the use of natural language. These definitions are fornthilisthe subsequent sections.

Wait free

e “A wait-freeimplementation of a concurrent object is one that guararttes any

process can complete any operation in a finite number of'sfidps38]

e “An algorithm iswait freeif it ensures that all processes make progress even when

faced with arbitrary delay or failure of other processesl.[M03]

e “Alock-free shared object is als@ait freeif progress is guaranteed per operation.”
[Mic04]

e “Wait-freealgorithms guarantee progress of all operations, indeg@raf the ac-

tions performed by the concurrent operations.” [Sun04]

Lock free

e “An objectislock freeif it guarantees that some operation will complete in a finite
number of steps.” [MP91b]

e “An algorithm islock freeif it guarantees that some thread always makes progress.”

[HLMO3]

e “A shared object idock freeif whenever a thread executes some finite number
of steps towards an operation on the object, some threadhraustcompleted an

operation on the object during execution of these stepsit(¥

e “Lock-freealgorithms guarantee progress of always at least one operaide-

pendent of the actions performed by the concurrent opeatigSun04]
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Obstruction free

e “A non-blocking algorithm isobstruction freef it guarantees progress for any
thread that eventually executes in isolation. Even thougbrahreads may be in
the midst of executing operations, a thread is considereddoute in isolation as

long as the other threads do not take any steps.” [HLMO3]

e “The core of arobstruction-frealgorithm only needs to guarantee progress when
one single thread is running (although other threads maw laehitrary states)”
[SS05]

e “Recently, some researchers also propadestruction-frealgorithms to be non-
blocking, although this kind of algorithms do not give anpgiress guarantees.”
[Sun04]

We do not follow any one of these definitions in particulard da avoid further
confusion, we do not present our interpretation using @&tanguage. Instead, we
jump straight into formalisation, then relate the defimggresented above to our formal
definitions. However, at this stage we point out that [Micpfdsumes that a wait-free

program is lock-free.

3.3.3 Progress functions

Our formalisation of non-blocking progress propertied wile progress functions from
Section 3.2.3. However, because the processes in a nokitidgarogram are identical
to each other, we may simplify the type of the progress fmcsio that the process id is
not in the domain. Furthermore, because we aim to providentb&t generic definition
possible, we do not restrict progress function®® values. Hence in a non-blocking

context, gorogress functiomas type:
I W — PW. (3.32)

whereW may be a complex type such as a tuple, array, etc., which maydieated in

the program state [CD0O7, CD09]. Progress cannot occur sithegart of the state being
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observed changes, and hence progress functions musy shégbllowing property
(\V/V:dom(H) \ € HV) (333)

As with livelock, by defining wait, lock and obstruction figzmam with respect to a prog-
ress function, we are able to define the progress propeitiesreblocking programs

without having to refer to the programs themselves.

3.3.4 Wait, lock and obstruction freedom

Definition 3.34 (Wait free) Let.4 be a non-blocking program; SS A.Proc — W; K
be a state-dependent expression such gk 4 (Vu.dom(s+ €vVals,_1.K # evals, .K));
andII be a progress function defined over W. Progrdns wait freewith respect td1
and K iff

(Vo aproc; ssss TILA = Ky = 83 ~ K, € I1.sg)). (3.35)

Thus, a program exhibits the wait-free property if each pssamakes progress inde-
pendently of the other processesKIis instantiated tgc andW instantiated to4.PC,
(3.35) is equivalent to:

(Vp:a.proc(Vipe, T A = pG =i~ pG, € ILi)). (3.36)

That is,.A is wait-free iff for every procesgin the program and for every value 7 of
the program counter, given that the recorded valyscpfs i, a state for which the value

of pg, is inIL.i is eventually reached.

Let us now compare Definition 3.34 to the informal definitimmnpiled in Sec-
tion 3.3.2. Definition 3.34 implies the definitions in [HLMQOB®IicO4, Sun04] because
when (3.35) holds, each process is guaranteed to make psodier Herlihy’s definition
[Her88], we may constrailil, K andW so thatK, € IL.ss, impliespg, = idle, i.e., if
procesg makes progress, then it must have completed the operati®executing. If

we have a proof opg, = i ~ pcg, = j, the proof must correspond to a finite number of

statement executions of procgssThus it follows that each operation terminates after a

finite number of steps.
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Definition 3.37 (Lock free) Let. A be a non-blocking program; SS A.Proc — W; K
be a state-dependent expression such thigf 4(Vu.qom(s+ €vals,—1.K # evals,.K));
andII be a progress function defined over W. Progrdns lock freewith respect td1
and K iff

(VssssTr. A = K = 8S~» (3p aproc Kp € I1.53)). (3.38)

Lock-freedom only requires that the program as a whole toenpagress; although
there may be processes that never make progress. Becakdeskedom is a property
of a program, we need to record a snapshot of the sted#t pfocesses, then show that
oneof these processes makes progresK i$ instantiated tgc, andW instantiated to

A.PC, we obtain:

(VssssTr. A = pc = 5~ (Ip.aproc PG € 11.53)).

Thus, given that we record the value of the program countkedl processes irss
eventually some process makes progress accordifigs. Because we check akin

SS we consider every possible configuration of the progranmtzs.

Let us compare Definition 3.37 with the informal definitiorfdack-freedom. We
can relate the definition in [MP91b, Mic04] to Definition 3.By constrainind, W, and
IT so thatK, € II.ss, impliespg, = idle. Note that the definition by Michael [Mic0O4]
can be misinterpreted to mean: there is a finite numbernsaych that an operation
is guaranteed to complete when a process has talsaps. This is clearly incorrect
because no single process is guaranteed to complete tlegatmm. The definition by
Sundell [Sun04] is a rewording of Massalin and Pu’s definifldP91b] where progress
can occur without a process terminating, and the requiréien a finite number of

steps be taken is removed.

The definition by Herlihy et al [HLMO3] implies Definition 373 however, the natu-

ral language version is ambiguous. Consider the followkmgession:
(Fp.aproc (VssssK = ss~ K, € 11.s5))), (3.39)

which is a possible interpretation of the definition by Heylet al [HLMO03]. However,

(3.39) is an incorrect interpretation of lock freedom bessaa program that satisfies
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(3.39), requires that there be a distinguished processitivays makes progress. Condi-
tion (3.39) is stronger than (3.38), which we can see by camgig a two process case.
For some program, suppoBeoc = {q,r} andII is the given progress function of the

program.

(3.38)
= {Proc={q,r}}
(VssssK = ss (Kq € ILsg) V (K € II.ss))
& {Lemma 2.24 (anti-monotonicity)
(VsssdK = 55~ Kq € I1.sg) V (pc= ss~ K; € I1.s5))
& {logic}
(VssssK = 58+ Kq € I1.sg)) V (VssssK = ss+ K, € I1.s5)
= {Proc ={q,r}}
(3.39)

Definition 3.40 (Obstruction free) Let A be a non-blocking program; W be a set;
SS= A.Proc — W; II be a progress function defined over W; and K be a state-
dependent expression such thiet . 4(Vu.dom(s)+ €Vals,—1.K # evals, K)). Program

A is obstruction freavith respect tdI and K iff
(Voproc; ssss TrA = K = ss+ (Kp € 118§, V (Fgproc P# O A Kg #5g))).  (3.41)

Our definition of obstruction-freedom follows from the angl source [HLMO3].
The first part of Herlihy et al's definition seems to requirattthere are no other con-
tending (concurrently executing) processes. Howeverhbysecond part, and by the
definition in [SS05], we realise that contending processesaliowed as long as they
do not take any steps, i.e., execute any statements. Thusgem is obstruction free
iff for each procesg and snapshats it is always the case thatié = ssthenp either

makes progress or some other process executes a (possdofgiimg) statement.

Notice that obstruction-freedom allows processes to pites@&ch other from making
progress. Unless a process is executing in isolation, ngress guarantees are provided.
An objective of Herlihy et al is the separation of safety amdgoess concerns during

program development [HLMO3]. In their words,
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We believe a clean separation between the two [safety argtess] con-

cerns promises simpler, more efficient, and more effectyerahms.

The definition we have provided allows one to observe thisndéd separation more
easily and it is now clearer that one half of ensuring pragiexoncerned with devel-
oping an effective underlying mechanism so that some psoeesntually executes in
isolation. We leave exploration of the sorts of mechanisqgsiired as a topic for further

work as it lies outside the scope of this thesis.

Comparing Definition 3.40 to those in Section 3.3.2, condi{i3.41) is exactly that
of Herlihy et al [HLMO3, SS05]. The definition given by Sunid@un04] is incorrect

because (3.41) does provide progress guarantees, altboeigare quite weak.

3.3.5 Relating the properties

In this section we inter-relate the progress propertieofblocking programs and de-

scribe their relationship to the progress properties ofliloy programs.

Theorem 3.42. Any wait-free program is also lock free, but a lock-free prog is not

necessarily wait free.

Proof. Let. A be a programiI be a progress function defined oWr SS= A.Proc —
W, andK be a state-dependent expression such (gt 4(Vi.qoms+ evals,—1.K #
evals,.K)). We prove that3.35) = (3.38) as follows:

(Vpaproc; ssss LA = Ky = 8§ ~ K € T1sg)
= {Lemma 2.24 (anti-monotonicity and monotonicity)
(Vp.aproc; ssss T A = K = 88~ (g aproc Kg € 11.8g)))
= {logic}
(Vssss Tr.A |= K =SS~ (Fg.aproc Kq € 11.55)))

To prove that lock freedom does not imply wait freedom, weréd the proof in

Section 5.4.1, which serves as a counter-example. =
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Theorem 3.43. Any lock free program is also obstruction free, but an obdian free

program is not necessarily lock free.

Proof. Let. A be a programil be a progress function defined oWr SS= A.Proc —
W, andK be a state-dependent expression such @t 4(Vi.aom(s+ evals,—1.K #
evals,.K)).

(VssssTr A = K = S~ (3. aproc Kp € 115S))
=  {Lemma 2.24 (monotonicity)

(VssssTr A = K = sS~ (Vo aproc Kp € IS,V (3gaproc 4 # P A Kp € 11.85))))
=  {logic: pis free inK = ss}

(Vpeaproc: ssss TRA | K = 85+ Ky € TLSS, V (gaproc 4 # P A Kp € TLsg))
= {(3.33)}

(Vp.AProc: ssss T A = Kp = 8§ ~» Ky € T1.SS, V (Fqaproc 0 # P A Kg # S$))

To prove that obstruction freedom does not imply lock freedae refer to the proof

in Section 5.4.2, which serves as a counter-example. =

We now explore the relationships between progress pr@seofinon-blocking and
blocking program, which highlights the benefits of non-lkiag synchronisation. Many
of the concerns of blocking programs are trivially satisfed., a non-blocking program
A does not suffer from individual or total deadlock. Becausehg; # p. is enabled if

pc, = i holds, we obtain the following lemma.

Lemma 3.44. A process p= A.Proc in a non-blocking progran satisfies individual

progress in trace & Tr. A iff it does not suffer from starvation in s.
Proof (=). By Corollary 3.20.

Proof (&). For anys € Tr..4 andp € A.Proc,

SF 2 (Fipc,C0(PG = 1) A TCGp.Pi))
=  {logic}{.A is non-blockingpg, =i = g,.pi}
sk (Vipc,0O(PG # 1) V OO(pG # 1))
= {ObOa= 0O<a}
st (Vipc, OO (PG 7 1)) :
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Under weak fairness, since each process is always enalbtea-blocking program

trivially satisfies individual progress. This is capturadtbe following lemma.

Lemma 3.45. A process pe A.Proc in a non-blocking progran satisfies individual

progress in each trace s Tryg.A.

Proof. For anyi € PC, ands € Trye. A, s = 0OO(—g,.pi) holds. Because is non-

blocking[ pg, =i = gy.pi ] holds, and hencet OO (pe, # i) holds. 0

If we define(Vi.4pc II.i = A.PC — {i}), then progress occurs whenever a process
of A takes a step. Hencd is devoid of total deadlock if (3.41) holds, and devoid of
starvation if (3.35) holds. Herel may be any concurrent program, i.e., is not necessarily

non-blocking.
Lemma 3.46. Any wait-free program satisfies individual progress (seérid#on 3.18).

Proof. The proof follows trivially due to (3.33). 0

3.3.6 Discussion

We have presented definitions for the three well known psgyroperties of non-
blocking programs using the logic of [DG06]. The relatioipshetween wait, lock,
and obstruction-freedom programs has also been estathlegshevell as their relation-
ship to blocking progress properties. In a blocking prograroving progress usually
amounts to proving progress past the blocking statememmishvprovide useful refer-
ence points in stating the required progress property. dtighat no blocking occurs in
a non-blocking program makes stating and proving their @egproperties much more
difficult. Furthermore, proofs of properties such as logeffom are complicated by the

fact that they are program-wide properties, as opposedrtprpeess.

Colvin and Dongol describe techniques for proving lock di@®, and prove that
a number of complicated algorithms from the literature awkIlfree [Don06b, CDO7,

CDO09]. Their techniques are supported by the PVS theorenep{§SJ 96].
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3.4 Conclusion

Formally describing progress properties of concurrengjfams is not an easy task, and
subtle variations in assumptions on the programming maatelesult in widely varying
proof obligations. By defining the progress properties of@gpam in a precise and
provable manner, confusion on what is required for a progmahave a given progress
property is avoided. A program has a given property pregisgien it satisfies the

definition.

We have formalised a number of properties of both blockind)rman-blocking pro-
grams and explored relationships between them. In the gubsechapters, we will use
these definitions to reason about the progress propert@molirrent programs in a pre-
cise manner. We develop a theory for proving leads-to ptagsan Chapter 4, which we
use to verify progress (Chapter 5) and perform progressibdesavations (Chapter 7).
Having formal definitions of the technical terms involvednfis the basis for tasks at
hand.
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A Logic of Safety and Progress

In this chapter we present a logic of safety and progressiteoptogramming model de-
scribed in Chapter 2. We present our definitions at a tracs lesing LTL. However, as
is widely known, direct proofs of LTL properties is difficulHence we reformulate the
safety logic of Owicki and Gries, and the progress logic oflDX to fit our program-
ming model in Chapter 2. We describe the relationship betvee safety and progress
logic to the trace-based semantics, which allows us to colecthat both logics are
sound [DHO7]. We make use of the fact that our model allowlsrgresentation of the
control state and fairness assumptions of each progranrdér o aid program deriva-
tion, our techniques for proving safety and progress aré¢ éalpulational, as opposed
to operational. Our logic is able to reason about safety aiogrpss in the presence of

divergence.

65



66

A LOGIC OF SAFETY AND PROGRESS

Following Dijkstra, we aim to prove safety and progress praps in a calcula-
tional manner, and hence also provide a predicate transfagemantics. Feijen and van
Gasteren [FvG99] have already shown that defining partiakectness (i.e., the weak-
est liberal precondition) is enough for proving safety @ies of concurrent programs,
however, in order to effectively reason about progresd) pattial correctness and total
correctness of statements need to be addressed [DHO7]eManalso define the weak-
est precondition predicate transformer. The weakest pddtion is used in Chapter 6 to

obtain an ordering on program refinement.

The safety logic is based on the theory of Owicki and Gries T6|Gbut follows the
nomenclature of Feijen and van Gasteren [FvG99]. Hencexaomele, thenterference-
freedonrequirement [OG76] is replaced by tgebal-correctnessriteria [FvG99]. By
using program counters, we may define assertions as a spguabf invariant, and
we are able to directly prove properties that normally regjintroduction of auxiliary
variables (see Section 4.2.3) [OG76, FvG99].

The progress logic is that of UNITY [CM88], based on the nooiature of Don-
gol and Goldson [DGO06], however, our presentation follolat of Dongol and Hayes
[DHO7]. This new presentation allows us to separate thesihTL from those depen-
dent on the program and explicitly state the fairness assampf each theorem. Fur-
thermore, we formulate new theorems (Theorems 4.45 andl thdBallow one to prove
progress under strong fairness and minimal progress. Aoritapt progress property we
consider is individual progress (Section 3.2.2), which wefy in Chapter 5 and ensure
via derivation in Chapter 7. Thus, we also present a numbgpedialised theorems and

lemmas for proving individual progress in a calculationammer [DM06, DMO08].

In Section 4.2 we present the safety logic; in Section 4.3¢eseribe how the logic
of progress from UNITY may be incorporated into our extenftethalism; and in Sec-

tion 4.4, we present techniques for proving individual pess.

Contributions. By definingwp andwlp in terms of the operational semantics, we are

able to prove that the predicate transformer definitionsuzfrd and termination have
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their intended meaning. Defining the safety and progress laging traces, and show-
ing that the safety definitions of Feijen and van Gasterenmndress definitions of
Chandy and Misra imply the trace-based definitions was sigddy lan Hayes. Defi-
nition 4.33 and Lemma 4.42 were developed in collaboratiih [@oug Goldson, how-
ever the treatment in this thesis makes the fairness assumptlearer, and we have
developed new theorems for proving immediate progressrigideng fairness and min-
imal progress. The lemmas in Section 4.4 are based on wor dollaboration with
Arjan Mooij [DM06, DM08]. However, Lemma 4.74 is novel, thaéfess assumptions
within each theorem and lemma is clarified, and the condititblemselves have been
generalised so that programs with more than two processgdeneonsidered. Further-
more, the presentation in this thesis allows reasoningtaboompletely specified code.
We thank Robert Colvin for an earlier proof of Corollary 4,.3#ich has inspired the

more general Lemma 4.34.

4.1 Predicate transformer semantics

For state spaces andI’, apredicate transformefrom X to I" has typePI" — P ¥, so
is a function that maps predicates oVeto predicates over. We present the predicate
transformer semantics of unlabelled and labelled statesnmersections 4.1.1 and 4.1.2,

respectively.

4.1.1 Unlabelled statements

Thewlp (weakest liberal precondition) predicate transformerared in terms of the

operational semantics as follows.

Definition 4.1 (Weakest liberal precondition)rhe weakest liberal precondition (wlp)
of an unlabelled statement US and a predicate P is the wegkedicate that needs to
hold before executing US, so that every terminating execuwf US results in a state

satisfying P. That s,

(Vo:s (WIP.USP).0 = (Vo5 (US o) == (skip, o’) = P.o"))
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Hence if thewlp of USto establisH holds in stater and the reflexive, transitive closure

of = results in(skip, ¢’), thenP must hold ino"".

We use notatioiix := E).P to denote the simultaneossbstitutiorof eachg, for all

free occurrences of, in P, i.e.,

(Vo.x (X := E).P).c = P.(0c ® {X+— mapevalo,E)}))

~

We use[P] to denote P holds in all states”, i.e.[P] = (V,.5x P.o), and notation
vX o [X = f(X)] to denote the greatest fixed point of the monotonic functioifhe
weakest liberal precondition for unlabelled statementyg b® obtained using the fol-

lowing lemma [DS90].

Lemma 4.2 (Weakest liberal preconditionfor the unlabelled statements defined in

Definition 2.1 and a predicate P, each of the following holds.

1. [wipabortP = true]

2. [wlp.skipp = P]

3. [Wip.(x:=E).P = (x:=E).P]

4. [wip.(x:€ V).P = (Vy.y (X:=X).P)] providedX is fresh

5. [wlp.(US;; US).P =  wip.US.(Wip.US,.P)]

6. [WiplF.P = A, (By= wip.US,.P)]

7. [WlpDOP = wvYe[Y=(B= wlp.(US; DO).Y) A (-B= P)]]

We present the weakest preconditiovp] predicate transformer which allows us to

describe the total correctness of statements [Dij76, DS90]

Definition 4.3 (Weakest precondition)Theweakest precondition (wmf an unlabelled
statement US and a predicate P is the weakest predicate #watsito hold before exe-

cuting US, so that US is guaranteed to terminate in a statefyaig P. That is,

wp.USP = wip.USP A t.US
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The definition ofwp for unlabelled statements follows the blocking semantics o
Nelson [Nel89]. We usg X e [ X = f(X) ] to denote the least fixed point of monotonic

functionf.

Lemma 4.4 (Weakest precondition)For the unlabelled statements defined in Defini-

tion 2.1 and a predicate P, the following holds.

1. [wpabort.P = false]
2. [wpskipP = P]

3. (wp.(R:=E).P = (x:=E).P]

4. [wp.(x:€V).P = (Vypy (X:=X).P)] providedX is fresh

5. [wp.(US;; US,).P = wpUS,.(wpUS,.P)]

6. [wplF.P = A, (By= wpUS,.P)]

7. [wpDOP = puYe[Y=(B= wp(US DO).Y)A (-B= P)]]

Note that the only real differences between Wip and thewp are the definitions
for statementabort and DO. For a non-terminatindpO statement and predicai®

wlp.DO.P evaluates tarue whereas thevp.DO.P evaluates tdalse

Lemma 4.5. For any unlabelled statement US, both of the following hold:

1. [tUS= wp.UStrue]

2. [g.US= -wp.USfalse].

Proof (1). For anyo € X, we have

(wp.UStrue).o
=  {Definition 4.3
(wlp.UStrue).oc A (t.US).o
=  {Definitions 4.1 and 2.4
(Vor.x (US, 0) =5 (skip, o’) = true.d’) A (tUS).o

= {logic: (V,.5 true.c = true)}
(t.US).o
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Proof (2). For anys € X, we have

(—~wp.USfalse).o
=  {Definition 4.3{logic}
—(wlp.USfalse.o VvV =(t.US).o
=  {Definitions 4.1 and 2.}{logic}
(For.x (US, o) =5 (skip, o’) A —(falsed’)) V ((US, o) =)
= {logic: (V,.x falsec = false}
(For:s (US ) =5 (skip,o”)) v ((US 0) =)
{definition ofg.US}
g.US o

4.1.2 Labelled statements

In this section, we define thep andwlp of labelled statements. Because the update to
PG, occurs implicitly, we must parametrise both te andwlp by the identity of the
process under consideration. We define predicate transfemfp, andwp, in a similar

manner towlp/wp.

Definition 4.6. For a labelled statement LL$n process p and a predicate P, we define:

1. (Yo (WIPp.LS.P).0 = (Vs ((LS1, ) 25, (id, o)) = P.o”))

2. [Wpp.LS.P=wIp,.LS.P At LS |

For the syntax in Definition 2.5, predicate transformetg, andwp, may be ob-

tained in a more direct manner as follows.

Lemma 4.7 (wlp,/wp,). For a labelled statement in a process p and predicate trans-

former transe {wlp, wp}.
1. [trang,.(i:abort).P = pg =i = transabort.P|
2. [trans,.(i: (US)j:).P = pg =i= trans(US pc :=j).P)]

3. [trang,.grd(IFL).P) = pg =i= A, (Byu= trans(US;; pc, := ky).P) ]
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4. [trans,.(LS;; LS;).P = trang. LS .(trang,.LS;.P)]

5. [trang,. IFL.P = trans,.grd(IF.).(A,(pG = ky = trang,.LS,.P)) |

»

. [WIpp.DOL.P =vYe[Y = (B A pg=i = WIp.(US pG:=Kk).(wlpp.(k:LS;; DOL).Y))

).
A (=B A PG =i= (pG :=]).P)]]

7. (Wpp.DOL.P =puYe[Y = (BApG =i=wp.(US pg :=K).(wpp.(k:LS;; DOL).Y))
A (FB A PG =i = (pg :=]).P)]]
Lemma 4.8 (wlpy,/wp, for non-empty frames)Given that the labelled statement under
consideration is in process p; axchas typerl, for a predicate P, the wjwp, is defined

below where trang {wlp, wp}.

1. [trans,.(i:X-[abort]).P = pc =i = transabort.P]
2. [trans,.(i:X-[(US)j:]).P = pg =i=trans(US X:€T; pc, :=j).P]
3. [trans,.(i:X-[grd(IF)]).P = pg=i= A,(Bu=

trans (US;; X:€ T; pey := Ky).P) ]

4. [transg,.(X-[LS;; LS,]).P = trans,.(X-[LS,]; X-[LS:]).P]

5. [trans,.(X-[IF ]).P =
trans. (X-[grd(IFL)])-(Ay(PG = ku = trans,.(X-[L&]).P)) ]

6. [Wip,.(X-[DO]).P =
vY o [Y = (BA pg=i= wIp.(US X:€T; pcy:=Kk).(Wlp,.(k: X-[LS;; DOL]).Y)) A
("BAPG =i = (X:€T; pgy:=j).P)]

7. [wp.(X-[DOL]).P =
pYe[Y=(BApPg=i=wp(US X:€T; pc :=k).(wpp.(k:X-[LS;; DOL]).Y)) A
(-BAPG =i = (X:€T; pey:=]).P)]]

Because updates to program counters are implicit, we maypgk= i to mean
“control of proces9 is at the control point labelled. Hence any atomic statement
i: (S ]:inaprocess, say, is equivalent to: (if pc, =i — Sfi) j:. Note that axioms (A1)
and (A2) in Section 2.3.2 that are required to define the nmgawii a control predicate

now become derived rules of the program counters model.
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Definition 4.9 (Strict, Conjunctive, Disjunctive)Suppose P and Q are predicates. We
say an labelled statement L8 process p istrictiff [ wp,.LS,.false= false], conjunc-
tive iff [wp,.LS,.(P A Q) = wp,.LS,.P A wp,.LS,.Q] anddisjunctiveiff [wp,.LS;.(P Vv

Q) =wp,.LS.P vV wp,.LS,.Q].

Like unlabelled statements, andg, may be obtained fromvp, as described by the

following lemma.

Lemma 4.10. For a labelled statement L,$n process p, each of the following holds:

1. [t,.LS, = wp,.LS, true]
2. [gp.LS = —wp,.LS, false]

Proof. The proof is analogous to the proof of Lemma 4.5. =

For a procesp and label statemeritS, in p, statementLS, is enabledif g,.LS,
holds andblockedif —g,.LS, holds. Calculating the guard and termination of an atomic

statement that does not contain any loops is straightfarwar

Example 4.11(Guard, Terminatioh For a procesp, suppose
LS, =i: (if B — skip|C — skip fi)j:
The guard oL S, is calculated as follows:

—wp,.LS, .false

=  {definition ofwp for labelled statemen}s
—(pg, =i = wp.(if B — skip|C — skip fi).((pg, :=j).false))

{logic}{definition ofwp for unlabelled statemerits

PG =i A ~((B = false) A (C = false))

= {logic}
pe =iA(BVvC)

HenceLS, is enabled in any state that satisfpgg = i A (B v C). The termination of

LS, is calculated as follows:
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PG =i = wp, LS, true

=  {definition ofwp for labelled statemen}s

PG, =i = wp.(if B — skip]C — skip fi).((pg, := j).true)

=  {definition ofwp for unlabelled statemerits
PG =i = ((B=true) A (C = true))

= {logic}

true

HencelS, is guaranteed to terminate from any state.

4.2 Alogic of safety

A popular and much referenced theory for verifying the safebperties of concurrent
programs is that of Owicki and Gries [OG76]. The method, &sown as the “mod-
ular method of proving invariants” [Qiw96], supercedes fineviously existing global
invariant method of Ashcroft [Ash75]. The interferencesiem condition proposed by
Owicki and Gries allows one to decompose global invarianthiat a number of smaller
proof obligations are proved instead. This avoids skege-explosion problerwhere
global invariants become infeasibly large. Annotationsissd by Owicki and Gries
provide a convenient manner in which verification of largeanants are decomposed

into smaller and more localised proofs.

We present a theory for proving safety in Sections 4.2.1 aB®4and present an

example verification of a safety property in Section 4.2.3.

4.2.1 Stable predicates and invariants

An annotationof a program represents the program’s proof outline andistnef a
collection ofinvariantsandassertionsA program'’s annotation may be proved using the
theory of Owicki and Gries [OG76], however, in order to faatle program derivation,
our presentation is based on the nomenclature of Feijenam&easteren [FvG99]. We

have incorporated program counters and defined an opesibsiemantics for the model,
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thus, we present definitions based on program traces. Tagoredhip to the theory of
Owicki and Gries is then established via a number of lemmas. &pproach provides
several advantages. In the approach of Feijen and van @astepredicate is invariant
iff it is maintained by every program statement, even those &re unreachable. By
defining invariants in terms of traces, we are able to imijicemove unreachable states
from consideration. Furthermore, because we regard antiass® be a special type of

invariant, we are able to decouple assertions from the otine.

We define a stable predicate in terms of traces and relatel&ftoitions of Chandy
and Misra [CM88] via Lemma 4.14. Recall that for a sequesage usedom(s)™ =
dom(s) — {0}.

Definition 4.12 (Stable) A predicate P isstablein trace s€ Tr..A under process &
A.Proc, denoted $- st,.P, iff

(\V/u:dom(sﬁL Su-1 —p Su Psi-1=s 7& TA PSJ)

P is stablein program.A, denoted st.P, iff (V. 4. proc Tr.A [= st,.P).

A predicate is stable in a process if it cannot be falsifiedigyrocess, although, it may
initially be false and become true. However, because aestabldicate need not hold at
the start of execution, the predicate may never hold. Nateitltransitions,_; — s,
causes the program to diverge, i®.—= | andP.s,_; holds, therp is not stable under
proces®. Hence a program with a divergent trace does not have anle sieddicates,

includingtrue andfalse

Definition 4.13(Invariant) Predicate P is annvariantof programA iff Tr.A = OP.

We now present lemmas that relate invariants and stablécated to the trace-based

semantics. We recall that we assumdnit terminates, and hence for asyc Tr.A,

SR

Lemma 4.14(Stable) Supposed is a program; | is an invariant of4; p € A.Procis a

process ofA. A predicate P istable inp, denoted $tP, if

(Vire, [1 A P = wp,.pi.P)). (4.15)
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Proof. Suppose € Tr..A andu € dom(s)*.

Si-1 —pSuAPSs1 = Ps,

& {definition of—}{l is an invariant of4 }

Is

(Jipc, (P, Su-1) —p (P,s0)) A (I AP).si—1 = Ps,
& {(4.15)

(Viepc, (P Sut) —p (P Su) A (WPp-pP) Syt = Ps,
= {Lemma2.9

Is

(Vipc, (P, Su—1) —p (id,sy)) A (WPp.pi.P).su—1 = P.sy
& {Definition 4.6

true ]

Lemma 4.16. For a program.A and predicate P, if wip.(A.Init).P], then(Vst.4 P-S)
holds.

Proof.
[wip.(A.Init).P]
=  {definition of[Q]}
(Vo5 WIp.(A.Init).P.o)
=  {Definition 4.1}
(Vyors (A.INit, o) == (skip, o’) = P.o”)
= {definition ofinitial (A4)}

(Vo initial (4) P-0”)
=  {Definition 2.12 (trace)
(\V/S:TF.A PSO) O

Lemma 4.17. For a program.A and predicate P, if wip.(A.Init).P] and si.P hold,
thenTr..A = OP holds.

Proof. Suppose € Tr.A. By Lemma 4.16P.s,. For anyu € dom(s)" assumé®.s,_;.
Becausest,.P, P.s, holds, and hencet OP. Furthermore, we have chosen an arbitrary
s, and hencdr. A = OP holds. O

The following lemma allows us to prove that a predicate isrant in a calculational

manner. Feijen and van Gasteren present conditions foethma as the definition of
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an invariant [FvG99], however, due to the possibility ofeliyence, we must strengthen

from wip to wp within (4.20) to handle safety and progress.

Lemma 4.18(Invariant) Let.A be a program and predicate | be an invariant.df A

predicate P is an invariant ofl if:

[wip.(A.Init).P] (4.19)
(Vo [I AP = wp,.pi.P]). (4.20)

Proof. The result follows by Lemma 4.17 because by Lemma 4.15, Y4n3fliesst,.P.

]

When using Lemma 4.18 (invariant) to prove that a predicatevariant, one of-
ten needs to strengthen the invariant to include auxiliafgrmation about the program.
Such a strengthening is permitted by the monotonicitygfi.e., one may prove a pred-
icate is invariant by proving invariance of a stronger pcatk. Furthermore, becausg
is conjunctive, a conjunction of predicates may be estiabtidy proving invariance of

each conjunct independently.

4.2.2 Correct assertions

In the theory of Owicki and Gries, a program’s annotationgbtly integrated with its
prooft [0G76, AO91, FvG99], which means one must treat invariants assertions
differently. Because we have incorporated program cosanteour framework, we are
able to reformulate the theory of Owicki and Gries [OG76, B9{E3n terms of invariants.
An assertiorP in proces9 that holds at control poiritis equivalent to statingP holds

whenever control of procegsis ati”, which is equivalent to invarianpg, = i =

P. Thus, assertions in a program simply become a notatiomalecion for program

invariants. We may choose one over the other based on réiadabncerns.

Definition 4.21 (Correct assertion)Supposél is a program, pe A.Proc is a process,

i € PC is a label. Predicate P is aorrect assertioat p iff Tr.A = O(pg, = i = P).

LIn fact, the annotation of a program is often referred to agtioof outline of the program.
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As with invariants, assertions may be proved correct usiedegchnique in [FvG99].
An assertion in a process must first be correct within the ggsca notion that Feijen
and van Gasteren [FvG99] refer to as “local correctnessat i@ if assertior? occurs
in processp at control pointi, execution ofp must establistP ati. In a concurrent
environment due to the possibility of interference fromesthrocesses Owicki and Gries
[OG76] require an “interference freedom” proof obligatiorensure that an assertion is
correct against the execution of other processes. Feijdrvam Gasteren re-interpret
interference freedom as the “global correctness” requergm That is, if assertioR
occurs within procesp, execution of any proceggother tharnp must maintairP. We
present our definitions of local and global correctnessgusices, then relate them to

those given by Feijen and van Gasteren using Lemma 4.25.

Definition 4.22 (Locally correct assertion)Suppose P is an assertion at control point i

in process p= A.Proc and se Tr. A. P islocally correctin s, denoted 8 LC,.P iff

(PG =1 = P).55 A (Vicdom(s)t Su—1 —p Su = (PG =i = P).8).

P islocally correctin program A iff Tr.A = LC,.P.

Thus, if assertiorP occurs at the start of procepsand (pg, = i).s, thenP.s; must
hold. Furthermore, ip transitions froms,_; to s, and(pc, = i).s, holds, therP.s, must

also hold.

A globally correct assertion in a process is a predicaterttat not be falsified by
the other processes in the program. We define a globallyaassertion in terms of a

stable predicate.

Definition 4.23 (Globally correct assertionSuppose P is an assertion at control point
I in process pe A.Proc and se€ Tr.A. P isglobally correctin trace s, denoted &
GC,, P, iff

(vq:A.Procf{p} st Stq(pcp =i= P))

P is globally correct in program iff Tr. A = GC,.P.
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According to Feijen and van Gasteren [FvG99], an assersia@oirect if it is both
locally correct and globally correct, (although this pdation is not proved). Using our
trace-based definitions, we may easily relate local andajjlofrrectness to the notion

of a correct assertion.

Lemma 4.24(Correct assertion)Given a program4, an assertion P in process g
A.Proc at control point i € PCy is correct if it is both locally correct and globally

correct.

Proof. Suppose < Tr..A. We will show thats - O(pc, = i = P) using induction on the
indices ofs. The base case holds becaaselLC,.P holds, and hencgpg, =i = P).5
holds. Foru € dom(s)*, suppos€pc, = i = P).s,_; holds and consider transition

Su—1 —.4 Su. We perform case analysis on transitions performed by gepcand process

q#p.

Si-1 —p S
=  {case analysis

S-1 —p A (PG # 1) .50V (PG = 1).50)
=  {logic}{sF LC.P}

(P =i = P).sy

Si1 g Su
=  {assumptioripc, =i = P).s,_1}
Si-1 g Su A (PG =1= P).sy
= {sFGC,.P}
(pg =i=P).s, O

Feijen and van Gasteren [FvG99] define a correct assertiog aenditions similar
to (4.26), (4.27) and (4.28) below, but without program deus However, although
their conditions allow one to prove correctness in a catautal manner (aiding pro-
gram derivation) it is not obvious whether or not their deifoms capture the intended
meaning. We use the Lemma 4.25 below to show that the calmogproof obligations

imply their trace-based counterparts.
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Lemma 4.25(Locally correct, Globally correct)Let A be a program and predicate |
be an existing invariant ofd. A predicate P in process g A.Proc at control point

i € PC} is alocally correct assertioff
[wip.(A.Init).(pg, =i = P) | (4.26)
(Vizpey [1 = WRo.py- (PG =T = P)]) (4.27)

Predicate P at control point;ps globally correct if

(Vg a7 p=[1 Apg =i AP = wpnq.PJ)). (4.28)

Proof. The local correctness part is trivial using the trace-batitions ofwp, while

the global correctness part is trivial if the following hsid

(Vg a#Pp=[1 A (pG =i = P) = wp,.q..(pG = i = P)])).

We have the following calculation:

I A (pG =1=P) = wp,.q.(pg, =i = P)
& {wpis monotoni¢
I A (PG =i=P) = wp,.q.(pG # 1) V wpy.qj.P
=  {g; cannot modifypg,}
I A (pG =i=P)=pc #iVwpq.P
= {logic}
I AP A PG =i= wpq.P O

A common strategy for obtaining a correct assertion is tergfthen the annotation,
e.g., replacingd P} S (where{P} Sdenotes stateme®with pre-assertior®) by {P A
Q} S Following Feijen and van Gasteren [FvG99], we use notgiti{ Q} Sto denote
{P N Q}S Here,Q is referred to as @o-assertionof P and vice versa. Because
assertions are essentially invariants, correctness df@assertion may be established
independently. Introducing a new assertion maintainsctmess of previous assertions,

and typically the weakest possible strengthening thaesethve goal is calculated.

The following lemma states that an invariant of the fggoy =i A pgg =) = P
holds if any execution of that establishegg, = i also establisheB, and similarly for

g. The lemma is inspired by a technique for avoiding total tead[Fei05].
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Lemma 4.29 (Invariant consequent)Given a programA; processes [ € A.Proc;

labels ic PC}, j € PC, predicate pg = i A pgg = j = P is an invariant ofA if

(Vkpe, [PG = KA PGy = | = WPy.pk. (PG = i = P)]) (4.30)
(Viepcy [PG =i A PG = K= Wpg.O.(PGg = = P)]) (4.31)

and all processes different from p and g maintain P.

The following lemma on program counters provides a head$srcondition fopg,.

Lemma 4.32(Program counter)Given a programA and a process e A.Proc, for

each ic PCy, pg, = iis a correct assertion at control point p

Proof. Local correctness abc, = i follows from the definitions of local correctness
andwp,, while global correctness follows becayss is a local variable op. Hence by

Lemma 4.24 (correct assertiop)g, = i is correct. =

Following Feijen and van Gasteren [FvG99], we gseried assertiongo denote
assertions in the program that have not yet been provedotorfn assertion that is
neither proved to be locally nor globally correct is ideetifiusing ?’. Notation “’LC’
denotes an assertion that is proved to be globally correchbulocally correct and
‘?GC’ denotes an assertion that is proved to be locally corredtnbt globally correct.

Similarly, invariants may also be queried.

4.2.3 An example safety verification

To make the foregoing discussion more concrete, we conal@xample verification
of the program in Fig. 4.1, wheveis a shared variable. The safety requirement of the
program is that when both processes have terminated, \@xiahs the value df, which

is formalised by the following invariant:
Safe = pox=7Apy=7 = X=2.

We note that in the framework of Owicki and Gries, not only iegicateSafedifficult
to formalise, its proof requires the introduction auxyiaariables [OG76, FvG99]. In

our model, this auxiliary information is implicitly capted by the program counters.
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Init: X, pcx, poy :=0,1,1

Procesx Processr

I:Xx:=X+1|1: x:=x+1

T: T:

FIGURE 4.1: Example program

To prove that the program in Fig. 4.1 satisfteafe we start by performing avp

calculation against the two program statements. Recdllhassume assignments are
atomic.

Safe= wpx.X;.Safe

=  {definition ofwp}
Safen pox =1 = (poy =7=x=1)
= {pc =1 = Safg{logic}

pex = 1= (poy =7 =x=1)

Although this does not prove th&gafeis invariant, the calculation elucidates conditions
required forSafeto hold, i.e., we must introduce assertioty = 7 = X = 1 at X;. By
Lemma 4.25 (locally correct) local correctness of this egse already holds because

Init falsifiespcy = 7. Following the symmetric calculation for stateméfif we obtain
the annotated program below.

Init: X, pcx, poy :=0,1,1

Procesx Processr

1 {?7GCpoy =7=x=1}| 1: {TGC pex =7 =x=1}
X:i=X+1 X:i=X+1

We prove global correctness of the queried assertiofy asing Lemma 4.25 (globally

correct), which requires that we perform the following caéddion:

px =1A(poy =7=x=1)=wp.Yi.(poy =7 =X =1)
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=  {logic}{definition ofwpy }
pcx =1 A (poy =7 =x=1) Apcy =1= (true=x=0)
< {logic}

pcx =1Apcy=1=Xx=0

Thus, although global correctness does not hold, the @lonlsuggests that assertion
pcy = 1 = x = 0 should be introduced as a co-assertion to the assertdn dhe new
assertion may be proved correct using Lemma 4.24 (corrgeti@®n), which results in
the following annotated program. Hence we may conclude Saétis an invariant of

the program.

Init: X, pcx, pey := 0,1, 1

Procesx Processy

I {poy =7 = x=1}|1: {pox =7 = x=1}
{pey =1=x=0}| {px=1=x=0}
X:=X+1 X:=X+1

We note thatx > 0 is stable in the program (but not invariant), whie> 0 is

invariant (and thus stable).

4.3 Alogic of progress

In this section we present a progress logic for our formalisnSection 4.3.1 we moti-
vate the choice of formalism. In Section 4.3.2 we descrilve the UNITY logic may be
incorporated into our model so that leads-to propertiesbeaproved without resorting

to LTL.

4.3.1 Motivation

The step from standard predicate logic to LTL representsnarease in complexity,

which is why Feijen and van Gasteren refused to take it. lim therds,
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... powerful formalisms for dealing with progress are afalié. However,
the thing that has discouraged from using them in practice is that they
bring about so much formal complexity. ... We have decidedestigate
how far we can get in designing multiprograms without ddimgnal justice

to progress...[FvG99, p79]

Other authors, while taking the step, fully recognise igmgicance. For instance, Lam-

port writes

TLA differs from other temporal logics because it is basedtanprinciple
that temporal logic is a necessary evil that should be adadenuch as pos-
sible. Temporal formulas tend to be harder to understand fitvanulas of
ordinary first-order logic, and temporal logic reasoningnre complicated

than ordinary mathematical reasoning. [Lam94, p917]

Caution in the face of this added complexity has recommendes the approach
taken in UNITY [CM88], in which the assertiofP‘leads-toQ’ formalises an important
class of progress requirements called ‘eventuality’ rexjuents. The progress logic of

UNITY is appropriate for two reasons:

e therules capture the LTL notion of leads-to [GP89, Pac%2is support reasoning

about progress without resorting to informal reasoning, an

e the rules are simple to use (relative to comparable progogicd such as Schnei-
der and Lamport [Sch97, Lam94]).

At the same time, we turn away from the UNITY programming mdmkeause it lacks
all notion of a control state, which makes (what should bep$#nconventional sequen-
tial programming much harder. Fundamental operators ssige@uential composition

cannot easily be represented [SdR94].

We have found that LTL [MP92], due to its rich set of operatarskes it easy
to specify liveness properties, and the resulting spedtifica tend to closely match the

intuitive understanding. However, proving LTL formulasatitly is complicated because
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it requires analysis of all possible execution traces. @rother hand, the progress logic
of UNITY is only suitable for specifying a subset of LTL pragies, but proving that a
program satisfies these properties is much easier. Henceovel@ a framework that
encodes all of LTL so that any property of a program'’s tracg beexpressed, yet also
provide techniques (like Chandy and Misra) for proving &al properties. We aim to

keep our proofs calculational, in a manner that suits progtarivation.

4.3.2 The progress logic

We now present our progress logic and prove its soundnebsrespect to LTL. The
basis of the progress logic in [CM88, DGO06] is the unlasy) felation which we define

as follows.

Definition 4.33(Unless) Supposed is a program; P, Q are predicates andgp.A.Proc
is a process. We saylhlessQ holds in p, denoted Bn, Q, iff there exists an invariant

| of A such that
(vi;pcp [l APA _|Q = prp|(P V Q)])

We say RunlessQ holds inA, denoted Run 4 Q, iff (Vp. 4.proc P Unp Q) holds.

Thus, a program satisfiésun 4 Q if for each atomic statemem in the program,
execution ofp; from a state that satisfiéd A -Q A pg, = i is guaranteed to terminate
in a state that satisfid3 v Q, i.e., eitherP continues to hold, o@ is established. Note

thatifI A P A =Q implies—g,.p;, then the condition foP un Q holds trivially for p;.

Note that if Tr.A = PWfalse holds, thenTr.4 = OP must be true, i.e.P is
an invariant ofA. However, ifP uny falseholds, then we cannot conclude tHat
holds initially. ForP to be an invariant of4, we require that botl un, falseand
[wip.(A.Init).P] to hold. This difference betwedhV Q andP un4 Qs highlighted by
Corollary 4.35 (unless) below. We first prove a lemma, whieles that if P A —Q).t,
holds in a trace, andP un 4 Q holds, therP W Q holds for the rest of the trace.

Lemma 4.34. Given a programd, if P and Q are predicates such thatun 4 Q holds;
t € Tr.Ais atrace of4; and (P v Q).t, for some ue dom(t), then(t,u) - PW Q.
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Proof. Supposd < Tr.A. We perform case analysis on whether or Qdt, holds for

somev € dom(t). Becausd is invariant,(Vy.aom |.tv) holds.

Case(Jv.dom( V> U A Qty). If Q.t, holds, i.e.v = u, then(t,u) - PWQ and we are

done, hence assumd).t,. We have

(v:dommy V= UA QL)
=  {assumption-Q.t, } {takev to be the smallestsuch thaQ.t, holds}
(Fvidom V= UA Qty A (Vieuv—1 (4Q)-tw))
=  {assumptiorfP v Q).t,}
{inductive application oP un4 Q}{l is invariant
(Guedom V> UA Qty A (Vw1 (I AP A =Q).t))
= {definition ofi/}
(t,u FPUQ
= {definition of W}
(t,buyFPWQ

Case—(Iv.aom(r) V > UA Q.ty). By logic, this is equivalent to

(Vvidom@ V= U= (—Q).ty)
=  {assumptioriP Vv Q).t,}{inductive application oP un4 Q}
(Vvedomn V> U= (P A —Q).t,)
=  {logic}{definition of O}
(t,u) 0P
= {definition of W}
(t,uy FPWQ o

Corollary 4.35 (Unless) Given a programd, if P and Q are predicates such that
[wip.(A.Init).(P VvV Q) ] (4.36)
Puny Q (4.37)
thenTr. A = PWQ.

Proof. The proof follows by Lemma 4.34 becaue vV Q).t, holds for any trace €
Tr. A. o
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Note thatP un 4 Q does not guarantee th@twill ever hold, for (an extreme) exam-

ple,true un4 Q holds for allQ, includingfalse

Lemma 4.38(Stable (2)) Suppose P is a predicatd, is a program, and p is a process.
Then,

1. st,.P = Pun, false
2. sty.P = P uny false.

Lemma 4.39. Supposea is a program with invariant I; pc A.Proc is a process; and

P, Q, and R are predicates such th@=- R|. Then,

1. if Pun, Q holds, then Run, R holds, and
2. if Puny4 Q holds, then Ruin 4 R holds.

Proof (1).
Pun, Q

=  {definition ofun,}

(Vie, [ AP A=Q = wpp.pi.(PVQ)J)
=  {assumptionQ = R}, i.e.,["R= —-Q]}
(Vipc, [ APA=R= wp,.pi.(PV R)])

=  {definition ofuny}

Puny, R

Proof (2).
Puny Q

= {definition ofun 4}
(Vp.aproc P UN, Q)

= {part (1)}
(Vo-aproc Pung R)

{definition ofun 4}

Puny R o
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Thus, if P is stable in procesp, thenP un, Q holds for any predicat€ (similarly

programA). We note thaP un,4 R cannot be proved usinQ un, Rand[P = Q].

The next lemma allows one to simplify the prooffotin, Q. Namely, ift A P A -Q
implies that some statementis enabled and execution pfestablishe® v Q, then the

rest of the statements withpomay be ignored.

Lemma 4.40. SupposeA is a program with invariant | and pe A.Proc is a process.

For predicates P and Q, if
(Eh:pcg [l APA _'Q = gp-pi A prp|(P V Q) ]) (441)
then Pun, Q holds.

Proof.
(Vizpey [1 AP A Q= wpo.p.(PVQJ))
= {case analysis
(Fircg (Vipc,—(ip [ AP A =Q= wp,.p.(PVQ)]) A
[IAPA-Q=wp.p.(PVQ)J
& {(9p-S= wp,.SX) = wp,.SX}{(4.41)}
(Hi;ch (Vircy—fiy [ AP A =Q A Go.py = Wy (P V Q) ]) A true)
&  {(4.41),ie ]l APA-Q= gppi}
(Fircs (Vipcy—fiy [ AP A=QA Gopi A Gp-Pj = WPp.P;-(P V Q)]) A true)
< {i#IAGp = 0p}

true ]

To guarantee that a property is eventually establishedgblaand Goldson define
immediate progresfG06] (ensuresn UNITY [CM88]) as the base case for the defi-
nition of leads-to. The rest of their definition consists lud transitivity rule (see The-
orem 2.22) and the disjunction rule (see Theorem 2.23). &ldesinitions implicitly

assume weak fairness.

We have shown that transitivity and disjunction are the@ehLTL (Theorems 2.22
and 2.23), which do not assume weak fairness. However, inateeprogress, which al-
lows one to prové ~~ Q without resorting to LTL depends on the program in consider-

ation. In this thesis, we present immediate progress asoadhethat relates conditions



88

A LOGIC OF SAFETY AND PROGRESS

on the program to the LTL definition of leads-to (Definitior22). This treatment is
more general than that of Chandy and Misra, and Dongol andgBalbecause the the-
orem proves soundness of the immediate progress condiiodsbecause the fairness
assumptions can be made explicit in the theorem. We presestsaon of immediate
progress under weak fairness Theorem 4.42, and additioeatiéms under strong fair-

ness (Theorem 4.45) and under minimal progress (Theore8).4.4

Theorem 4.42(Immediate progress under weak fairnes)pposed is a program; | is

an invariant of4; and P, Q are predicates. Themr..4 = P ~~ Q holds provided

Pun, Q (4.43)

(3 [TAPA-Q = gp.pi AWP,pi.QJ). (4.44)

Proof. 2 By Lemma 2.25 (contradiction), we may equivalently pravgs.A = P A
—Q ~» Q. Assumingt € Trywr.A, we perform case analysis on whether or not the

antecedent of (4.44) is established.iGiven an arbitraryl € dom(t), we have:

Case(t,u) = =< (P A =Q).

(t,u) F =O(P A =Q)
= {logic}
(t,u) - O(-PV Q)
=  {logic}
(t,u) - 0OP= Q)
= {a= <a}{definition of -}
(tLuFP~Q

Case(t,u) - O(P A =Q).

20n proving Theorem 4.42 (immediate progress under weakefss), we discovered an error in the
definition ofun in [DGO06]. In [DGO6],P uny Q holds if P A —=Q = wlp.S.(P Vv Q) holds for all
statementS$in A. However, partial correctness providedwlp is not enough to guarantee thiat~~ Q
holds. For Theorem 4.42 (immediate progress under weatefss), untilp; is executed, all processgs
different fromp must establist? v Q. However ifP un 4 Q is defined using thevlp, then a statement in

g might not terminate wherel®y ~~ Q will not hold.
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(t,u) = O(P A -Q)
=  {definition of &}
(Svedom V= UA (P A =Q).t)
=  {Lemma4.34 using (4.43)
(vdomm V= UA (t,v) FPWQ)
= {definition of W}
(Fvdomry V= UA (t,v) FPUQV O(P A =Q))
=  {(4.44)}{l is invariant
(Jvdomny V= UA (t,v) = PUQ V Ogy.pi)
= {te Trwe A, (3.2)}
(Fvdommy V= UA (t,v) F PUQ)
= {alUb= <b}
(Fvdom(ry V> UA (t,v) Q)
= {definition of &}
(t,u) F O0Q
=  {OCa= <Cal{logic}
(t,uyFP=<Q

The above holds for antye Tryr..4 andu € dom(t), and henc@rye. A =P~ Q. 4

To make sense of the Theorem 4.42 (immediate progress uredd fairness) we
provide these interpretative noteBwe..A = P ~~ Q is justified on the basis of being
able to execute a continually enabled atomic statemenestablishe§). The theorem
formalises this because we can be assured”iemains true as long axQ is true due
to P uny Q. Second, we establish that control of procps$s at an atomic statemenpy,
thatp; is enabled whe® A —Q is true, and that execution pf makesQ true. It follows
from P uny4 Q thatp; is continually enabled as long af) is true and because we are

assuming weak fairness, thatmust eventually be executed wherdBys established.

Theorem 4.45(Immediate progress under strong fairnes)ppose4 is a program; |

is an invariant of A; and P, Q are predicates. Thefiise.A = P ~» Q holds if the
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following hold:

Puny Q (4.46)
[IAPA=Q = (3 gp-pi A WP.Pi.Q)] (4.47)
Proof. Supposé € Trge.. A. For someu € dom(t), we may discharge casé u)

=O(P A =Q) in the same manner as in Theorem 4.42. For ¢ase - (P A =Q), we

have the following calculation.

(t,u) = (P A Q)
=  {definition of &}

(Fvidom(®y V= UA (t,v) F P A Q)
= {(4.46)}{Lemma 4.34
(Fvedom(®y V= UA (t,v) FPWQ)
=  {definition ofi/}
(vdom V= UA (t,v) FO(PA-Q) VPUQ)
= {lisinvarian{{a= <¢a}{PU Q= <¢Q}
(Fvdom(n V= UA (t,v) FOO(I AP A =Q) V OQ)
= {447}
(Bvidom(y V= UA (t,V) - OO(F! go-pi A WP,.pi.Q) V OQ)
= {00 (3xr P) = (3t OOP) for finite T }{.A.Proc andPC, are finite;
Cudom(y V> UA (£,V) F (T 0O(ge.pi A WP,.pi-Q)) V OQ)
= {teTrse. A e, (3.5}
(Fedom(o V= UA (tV) F (32 0O(Gopi A W-P.Q) A DO (PG, # 1)) V ©Q)
= {instantiatep } {p; is eventually executgd
(Fvdommy V= UA (t,v) F OOQ V ©Q)
= {definition of &}{O<Ca = <¢a}
(t,u) - ©0Q
=  {OCa= <Cal{logic}
(tu-P=23Q

Because we have chosen an arbitagyTrsr..4 andu € dom(t), Trse. A =P~ Q. o
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The theorem states th& A —Q needs to imply that there is a enabled statement
that establishe® and that control is currently at that statement. Thus, eiatwf a
procesg different fromp may disablgy; as long as it enables some other statement that
can establisi®. Condition (4.47) required by Theorem 4.45 (immediate pgeg under
strong fairness) is weaker than condition (4.44) requingd beorem 4.42 (immediate
progress under weak fairness), however, by weakening tniditon, Theorem 4.45

only holds for strongly fair traces.

Theorem 4.48(Immediate progress under minimal progressjipposed is a program;

| is an invariant of4; and P, Q are predicates. Thef,..A = P ~~ Q holds if
[T APA=Q= (Y5 Wph-pi-Q) A (35 Go-Pi)] (4.49)
Proof. The proof follows because A —Q implies that execution of each enabled state-

ment establishe® and furthermore, some statement is enabled. O

Thus,P ~ Q holds for all traces of a program B A —Q implies all enabled
processes establishand one of these processes is enabled. Condition (4.49) st

than (4.44), but Theorem 4.48 does not impose any fairngssreznents.

We often make use of the following lemma which enables usremgthen our ini-
tial assumptions in a leads-to proof and allows us to remaveachable states from

consideration.

Lemma 4.50(Invariant progress)Supposed is a program; | is an invariant of4; and
P, Q are predicatesir.A =P ~» Qholdsiff T A =P Al ~~ Q.

Proof. Given any trace € Tr..4, we have:

sEFOIA(PAL~ Q)

{definition of ~ }{distributeO}
sEO(IAPAL= OQ))
{logic}
sEO( A (P=<Q))
=  {distributeC}{definition of~}
sk Ol A (P~ Q) .
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4.3.3 Discussion and related work

Owicki and Lamport [OL82] present a proof system where the bperatorsa and<

have been incorporated into the Owicki and Gries formalidndrawback of their sys-
tem is that it does not contain a blocking primitive, and heglnlocking must be simulated
using a looping construct. Their logic is missing the ‘uslesgperator, and keywords,
‘at’, ‘after’ and ‘in” are used to describe the control stafethe program which means
the proofs are not calculational, hence are less suitalbfeinontext of program deriva-
tion [FvG99]. Lamport [LamO02] describes a framework that@ates LTL, however, the

framework is mostly suitable for describing specificatiamst programs.

A UNITY program [CM88] consists of a finite number terminajiatatements, all
of whose guards are evaluated atomically. Weak fairnesgerently assumed and may
be expressed as “each statement is executed infinitely’dit4ie01]. Because each
statement is terminating, one may also asswpe= wip [JKR89] which allowsun to
be defined using thelp predicate transformer. In [DGO06], the safety logic of Owick
and Gries [OG76] is integrated with the progress logic froMITY [CM88], i.e., the
progress logic from UNITY is incorporated into a fundamdgitdifferent model. In this
thesis, atomic statements may become disabled or may moihegte which allows one

to describe programs that are not expressible in UNITY.

Although~~ is a liveness property, the presentation in [CM88, DGO6sdus refer
to LTL [MP92]. Jutla et al [JKR89] describe the weakest letmpredicate transformer
which is related to the progress logic of UNITY and CTL. Geatid Pnueli [GP89]
show how UNITY could have been obtained as a specialisafiaransition logic and

linear-time LTL [MP92], thus providing a theoretical bacgifor UNITY.

Our presentation separates theorems of LTL from those optbgress logic more
clearly and requirements such as weak fairness that arécitipl[CM88, DGO06] have
been made explicit. The usefulness of this is demonstratedibability to devise new
theorems (Theorems 4.45 and 4.48) that describe the consliiecessary fd? ~~ Q
to hold under strong fairness and minimal progress assonmgtiThis work is closely
related to the theory of Jutla and Rao [JR97] where condittbat guarantee ‘ensures’

under differing fairness conditions are presented usiedipate transformers and CTL.
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Theorems 4.42 and 4.48 are almost equivalent to those @ef daotl Rao [JR97] but the

conditions for Theorem 4.45 are simpler.

4.4 Proving individual progress

We now describe techniques for proving individual progneghlout resorting to LTL.

We present the most general lemmas possible, then show lesg temmas may be
used to prove individual progress. The progress logic fraatisn 4.3 allows proofs

via algebraic manipulation, so we aim for a calculationalgbrmethod. Furthermore,
we aim to use progress proofs as a tool for program derivaéiod hence we evaluate
how the derivation techniques of Feijen and van GastereG §oy affect progress, and
we develop a number of heuristics to aid derivations. Thdemge is to be formal and

precise, while keeping the complexity of the proof obligas low.

This section is organised as follows. We formalise the gdoure for progress
[FVG99] in Section 4.4.1; consider stable guard under weakdss in Section 4.4.2;
non-stable guards under minimal progress in Section 4dath@progress at the base un-
der minimal progress in Section 4.4.4. We present heusisitiat summarise our theory

in Section 4.4.5 and techniques for program derivation ctiSe 4.4.6.

4.4.1 Ground rule for progress

By Definition 3.18 (individual progress) and Lemma 2.25 (cadiction), a progrand

satisfies individual progress iff for eapghe A.Proc andi € PC,, the following holds:

TrAEpg =i~ pe #i. (4.51)

Under weak fairness, i terminates and does not block, then (4.51) is trivially true
However, ifp; is a blocking statement, we take the following rule from [RP&pinto

consideration.

Rule 4.52(Ground rule for progressfor each guarded statemeifitB — Sfi, in a pro-
cess, it should hold that the rest of the system has the paitehtltimately establishing
B.
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Rule 4.52 motivates the use of Lemma 2.29 (induction) whldwa execution of the
whole program to systematically be taken into considenate usually consider a well-
founded relation whose value is reduced by all processes tdtanp. For example, if
there is only one other process, sgywe might consider relatiof<,PCg). Then,
application of Lemma 2.29 (induction) to prove (4.51) résuh the following proof

obligation:

(Vipcg TRA PG =1 AP =]~ P& # i V (PG =1 A pcq < |)).

which by is equivalent to

(Vipcg TRA PG =1 APG =]~ PG # 1V pg < j). (4.53)

Requirement (4.53) may be proved via case analysis®fPC;. For such proofs, we

take the following heuristic into account.

Heuristic 4.54. Progress is better addressed from the base of the well-dinelation

back to the maximal element.

Notice that application of Lemma 2.29 (induction) allows tralue ofM to increase
before it decreases to below its original value. In our pspwfe find it easier to ensure
that the value oM is continually decreased whenever progress has not bees, imad
we use a stronger requirement that execution of each statattleer reduces the value
of the well-founded relation, or establishes the desiredlte For such proofs, we may

use Theorem 4.48 (immediate progress under minimal fajnes

4.4.2 Stable guards under weak-fairness

Under weak fairness individual progress holds if

which is guaranteed ifj,.p; is stable in the other processes and eventually becomes
enabled. We may apply this principle to more general foremwathe formP ~~ Q

by ensuring that a statement, gaythat is guaranteed to achie@eeventually becomes
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enabled, and furthermorg,.p; is stable in the other processes. Recall that wesge

to denote that predicateis stable in process.

Lemma 4.56(Stable termination)Supposea is a program; predicate | is an invariant
of A; P and Q are predicates; & .A.Proc is a process; and £ PC, is a label. If for

some predicate R,

Trwe A =P~ QVR (4.57)
[IAR = gp.pi A WP,.pi.Q] (4.58)
(Ve proc P 7# § = Sig.R) (4.59)

thenTrwe. A = P~ Q.

Proof. By (4.58) and Lemma 4.4(R un, Q holds, while by (4.59) and Lemma 4.38
(stable (2)),R ung Q holds for all processeg # p. HenceR un,4 Q holds. Using
Runy4 Qand (4.58), we apply Theorem 4.42 (immediate progress umeak fairness),
which gives usTryr.A = R ~» Q. The result then follows using (4.57) together with

Lemma 2.27 (cancellation). =

Without the weak fairness assumption, establishing thaest@onditionR is not suffi-
cient for showing? ~~ Q because there is no guarantee that propest be executed

even ifgp.p; is stable in processes other than

If we use Lemma 4.56 (stable termination) to prove (4.55raépplying Lem-
ma 2.29 on (4.57) and some simplification, we obtain the ¥ahg progress require-
ment:

(Vmw Trwe A E PG =i AM=m~>pg,#iVRVM <m) (4.60)

and condition (4.58) is equivalent b A R = go.pi A t,.pi|. If mis a base of<, W),
it is not possible foM < mto be established, and furthermore, proogsé p cannot
establishpg, # i, and henceR must be established. Thus, we obtain the following

heuristic.

Heuristic 4.61. In a program that satisfies (4.60), the statement(s) in scgs p that
correspond to the base ¢k, W) should establish R.
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Under weak fairness, for a program with only two processeByidual progress for

a statement with stable guard may be proved using the fallpworollary.

Corollary 4.62 (Stable induction) SupposeA is a program; | is an invariant of4;
A.Proc = {p,q}; and (<, PCy) is a well-founded relation. Then, for anyiPC, such
that st.(gp.pi) holds, Trwe. A = pg =1 ~» pG, # i holds if for some S& PCQ:

(Vipcy—ssll APG =1ApGg=]j= (4.63)
tp-Pi /A WPg.Gj-(PGq =<V Gp-Pi) A (Gp-Pi V Gg-Gj) ])

(Vj:ss Trwr A = peg =j ~ p&q <) (4.64)

Thus, for some set of labef8S statements corresponding to labels outsid&®must

satisfy (4.63), and statements corresponding to labe&Smust satisfy (4.64). Condi-
tion (4.64) allows one to prove individual progress usinguasptions on incompletely
specified parts of the program. For example, in a mutual si@huprogram, one might
assume that the critical section terminates, and that théléibel of the critical section
is smaller (with respect t6<, PC;)) than all labels within the critical section. Such an

assumption can be stated using (4.64).

4.4.3 Non-stable guards

When proving a property of the form (4.53) procgss guaranteed to achieye, # |
if pi terminates, while processis guaranteed to achieye, < j if j is not a base of
(<,PCq). Using this observation, we present the following lemma #ilws us to

prove the general condition for Lemma 2.29 (induction).

Lemma 4.65(Deadlock preventing progressSupposed is a program; | is an invariant
of A; P and Q are predicates{~<, W) is a well-founded relation; and M is a total
function from states aofl to W. For a fresh variable m, a process9.4.Proc and label

i € PCy, if:

[IAPAM=mA-Q=

Wp.pQ A (4.66)
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(V4 G # P = Wpy.G-(QV (PAM < m))) A (4.67)
(3 9a-q)] (4.68)
then,
TTAEPAM=m~QV(PAM=<m).
Proof.

TAEPAM=m~QV(PAM=<m)
& {Theorem 4.48 (immediate progress under minimal fairness)
withP:=PAM=mandQ:=QV (PAM=<m)}
[IAPAM =mA-Q= (3 94.9) A (Vg WPy (QV (PAM < m)))]
& {case analysiq (4.68)}
[IAPAM=mA -Q= wp,pi.QA (Vg G # Pi = WG (QV (PAM < m)))]
£  {(4.66){(4.67)}

true

By (4.66), ifl A P A M = mholds therp; is guaranteed to terminate and estabsh
whenever it is enabled, and by (4.67) each statemettifferent fromp; that is enabled
Is guaranteed to terminate and estabish M < m. By (4.68), ifl AP A M =m

holds, then at least one of the processes in the programlidesha

Using Lemma 4.65 (deadlock preventing progress) to prosSj4esults in the fol-

lowing requirement
[IApPG=iAM=m=
to-Pi A (V3 A 7 P = Wpy.q.(M < m) A (35 9q.9))] (4.69)
Condition (4.69) implies (4.66) becau$ep,.pi.(pG # i)] holds and (4.69) implies
(4.67) becauspg, =i A i # ] = —0,.p; holds for any procegsand labels, j.

For a program with only two processes, one may use the fatigeorollary to prove
individual progress. Because the guargok not stable in procesg each statement in

g must eventually reduce the value of the well-founded retati
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Corollary 4.70 (Binary induction) SupposeA is a program; | is an invariant of4;
A.Proc = {p,q}; (<, PCy) is awell-founded relation; S§ PCg; and Q is a predicate.
If for some ic PC,, if there exists TTC SS such that,

(Vissr [l APG =1APpeG=]= (4.71)
WP.p;.Q A Wpy.Gi. (PG <] V Q) A (Go-pi V Gg-0f) |)

(Yrr TRA = PGy = | ~ PGy <) (4.72)
then(V.ssTr. A = pg =i Apg=j ~ QV pg <j) holds.

Note that ifj is a base of <, PCg) andQ = (pg, # i) we havewp,.q;.(pg < j V
PG # 1) = WPy.q;. (PG # 1) = (-0 = PG # 1). Thus, (4.71) simplifies to

[TAPG=iAPG=]=t.p A G.pi A 70q.G ] (4.73)

Inductive proofs that use<, PC) are potentially problematic if proceggontains a

loop, which may increase the valuepf,. For the two process case under weak-fairness,

we may use the following lemma.

Lemma 4.74. SupposeA is a program; | is an invariant of4; A.Proc = {p,q};
(=, PCq) is awell-founded relation; and Q is a predicate. If therestsia set RRC PCy

such that
Trwe. A = O(-Q A pgg € RR= gp.pi) (4.75)
(vkzpcg—RRj:RRk <) (4.76)
(Vi —rR Trwr- A = PG =i Apeg =)~ QV pg <) (4.77)

then(Vj.pc; Trwr- A = PG =1 A peg=]j ~ QV pg < jholds.
Proof. By logic, we have:
Trwe. A = OO0(—Q A pgg € RR) VvV =00(-Q A pgg € RR)

=  {logic}
Trwe.A = CO(=Q A pgg € RR V OS(QV pgy € RR)
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= {(4.75)}
Trwe-A = ©Ogp.pi V OO(QV pgy ¢ RR)
= {by definitionTrye.A = ~C00,.pi}
Trwe. A = 0C(Q V pg € RR
=  {by definition}
Trwe. A = true~ Q V pgy € RR

The proof now follows.

(ijpcg Trwr A FE PG =i Apg =)~ QVpc <j)
& {@477}H{RRC PC}}
(Vi:re Trwe-A = PG =1 A PGg =] ~» QV pgy <)
£ {@4.76)
(Virr Trwr-A = PG =1 A PG =~ QV pgg ¢ RR)
& {calculation above and Lemma 2.24 (anti-monotonigity)

true ]

4.4.4 Base progress

In a proof of condition (4.53) for a labgthat is a base of<, PCy), we have the follow-

ing calculation.

TTAEPG =i AP =]~ Ppe #iVpgy <]
= {jisabaseof<,PCg)}

TrAEPG=1ApPG =]~ pG #I

We have developed the following lemma to prove progresseabése of <, PC) that

generalises this observation.

Lemma 4.78(Base progress)Supposed is a program; | is an invariant of4; P and Q
are predicates( <, W) is a well-founded relation; M is a total function from statefs4

to W; and b is a base df<, W). For process p= A.Proc and label ic PC, if:

[l APAM=b= gopi AWR-P.QA (V4 q# P = —Gq.G) ] (4.79)
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then,
TTAEPAM=Db ~ Q.

Proof.
TTAEPAM=b~ Q
& {Theorem 4.48 (immediate progress under minimal fairness)
with P:= P A M = b}
[IAPAM=b= (35 09.9) A (V4 Wpy.6.Q)]
& {logic}{case analysis
[IAPAM=b= gppi AWP,.P.Q A (V5 P # = Wpy.0.Q) ]
& {logic}{false= wp,.q;.Q}
[l APAM=b=gopi AWp.P.QA (V5 P # d = wpy.q.false) |
&€ {wpy.q.false= —gq.0}{(4.79)}

true ]

Note that ifgp.p; then for anyj # i, —g,.p;. According to Lemma 4.78 (base progress),
PAM=b~ Qifl AP A M = bimplies thatp, terminates and establish€s
and furthermorep; is enabled while all other processes are disabled. Thisesigghe

following heuristic for choosing bases of a well-foundelatien.

Heuristic 4.80. A good base for a well-founded relation corresponds to akilagstate-
ment. If all blocking statements are unsuitable, the statgnmmediately preceding the

blocking statement may be used.

4.4.5 Progress under weak fairness

In this section we present two lemmas for proving individuagress under weak fair-
ness in two-process programs, which summarises the themry3$ections 4.4.2, 4.4.3
and 4.4.4. Suppos#4 is a program such that.Proc = {p, q}. We show how a property
of the formTrye. A = pG = i ~» Q may be proved for a predica@ whereq may be
a possibly non-terminating loop. Note that by substitufieg # i for Q, we obtain the

proof obligations for showing individual progress. dfcontains loops, then the ‘data’
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state must also be considered, in which case the well-falrelation as well as condi-
tions (4.76) and (4.72) must be generalised (e.g., in a miasimélar to Lemma 4.65).
The lemma below describes the conditions necessary ggris not necessarily stable

in processy.

Lemma 4.81(Unstable guard)SupposeA is a two-process program with invariant |
such thatA.Proc = {p, g}, and there exists a well-founded relatior, PC;) and sets
RRC PC;, TT C PC; — RR such that (4.76) and (4.72) hold. For a label PC; and
predicate Q,Trwr.A |= pG, =i ~» Q holds if (4.75) holds and

(Vi:pcg—rR-TT [ A PG =1 A PG =] = (4.82)
WPp-P-Q A WPy 0. (PG < j V Q) A (Gp.Pi V Gq.Gj) |)-
Proof.
Trwe AEpPG =i~ Q
& {Lemma 2.29 (inductior})
(Vipey Trwe- A = PG =1 A PG =]~ QV pcy <)
& {Lemma 4.74, using assumptions (4.75) and (4.76)
(Vipcg-rrRTrwr- A = PG =1 A peg =] ~ QV pcg <)
& {Corollary 4.70 (binary induction), using (4.72)
(\V/j:(chfRR)fTT [TAPG =iAPG=]=
WPp-Pi-Q A WPy 0. (PG < ] V Q) A (Gp.Pi V Gq.Gj) ])-
& {(4.82)

true ]

If a predicate that implies thaj,.p; is stable in procesg, we may use the second

lemma below.

Lemma 4.83(Stable guard) Supposed is a two-process program with invariant | such
that.A.Proc = {p, g}, and there exists a well-founded relatior, PC;) and sets RR
PCg, TT € PC; — RR such that (4.76) and (4.72) hold. For a labetiPC, and
predicate Q,Trwr. A = pg = i ~» Q holds if there exists a predicate R such that
[ AR= gp.pi ], Trwe-A E SR, and

Trwe. A = O(-Q A -R A pg € RR= gp.pi) (4.84)



102

A LOGIC OF SAFETY AND PROGRESS

(Vi:peg—rR-TT [ A PG =1 A PCg=] = (4.85)
WP-Pi-Q A W0 (PG < j V QV R) A (Gp-Pi V 9q.G) ]).

Proof.
Trwe. A = pg =i~ Q
& {Lemma 4.56 (stable termination)
use[l A R= gp.pi], (4.85), andlrye.A = st;.R}
Trwe AEPG =i~ QVR
& {Lemma4.73

true ]

4.4.6 Program derivation

Proving that a progress property holds is difficult [Lam@®}en more difficult is main-
taining a progress property under program modification. etshown how progress
properties may be proved by introducing a well-foundedti@ia This allows one to
introduce invariants that ensure each statement eithecesdhe value of the relation,
or establishes the required condition. That is, by using laf@ended relation, a proof
of progress can essentially be reduced to proving invagidrtte sorts of invariants that

need to hold depend on stability of the guards under coreioer

The progress property we consider is individual progresshvjuarantees that prog-
ress is made past each reachable statement. Under weakstiindividual progress
is maintained upon introducing a non-blocking terminattatement. However, upon
introducing a blocking statement, we immediately intraglacorresponding proof obli-
gation to guarantee individual progress past the staterDepending on whether or not
we are able to assert stability of the guard of the blockiageshent, progress is proved

in one of the following two ways:

e For a guard that is stable under the other processes, theqiligation is weak-

ened using Lemma 4.56 (stable termination). Then, Lemm@ @m2luction) is
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applied using a well-founded relation corresponding tortherse execution or-
der of all other components. Following Heuristic 4.61, @blié bases of the well-
founded relation are labels corresponding to statemeatsestablish the stable

condition.

e For a guard that is not necessarily stable, progress is grioyalirectly applying
Lemma 2.29 (induction). Following Heuristic 4.80, suiwlilases of the well-

founded relation are statements that can block.

Once a suitable base is found, case analysis on the programecs of the other compo-
nents is performed. The non-blocking statements are géngreranteed to terminate
at a smaller control point, and hence may immediately behdiged. For the block-
ing statements, we use Theorem 4.48 (immediate progress uridimal fairness) and
Lemma 4.65 (deadlock preventing progress), which, in wsoally introduce some new
requirements on the program. The derivation then contibyaatroducing statements

and annotation so that the new requirements are satisfied.

4.5 Conclusion

Hoare showed how a sequential program could be verified witresorting to the op-
erational understanding of the program [Hoa69]. Then, & dbntext of concurrent
programs, Owicki and Gries showed how safety propertietddoel verified by adding
aninterference freedoroondition to Hoare’s logic, but leaving the underlying login-

changed [OG76]. Although this modification was small, thei¢kivand Gries theory
improved on the previously existing global invariant methad Ashcroft [Ash75]. In

this chapter, we have described a logic of safety that reftataes the theory of Ow-
icki and Gries in the programming model from Chapter 2 whetgmm counters are

explicit. Furthermore, we incorporate a logic of progreshin the theory.

Our extension to the theory of Owicki and Gries includes adad progress. This
thesis uses the logic to describe a method of program dienivat the style of Feijen

and van Gasteren [FvG99]. In a program verification, we dohaet the freedom to
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change a program when a proof does not work out. We are |dftthvt dilemma of not
knowing whether the program or the proof is at fault. In tleispect, deriving a program
that satisfies a specification is certainly superior. Fedjed van Gasteren have already
shown how commonly occurring design patterns can be idedtifi both programs and
their proofs, and how these patterns can be used to short&fisprWe believe that
patterns such as these will emerge with the extended theovwyedl. It is a case of

realising when they do and noting them accordingly.

We have presented a number of techniques that are suiteldefaletivation of con-
current programs, paying equal attention to safety andrpssg The style of deriva-
tion we are aiming for is that of Dijkstra [Dij76] and Feijencivan Gasteren [FvG99]
where program construction involves repeated modificatiosm program as guided by
the queried properties. Such techniques benefit from aledilonal approach to proofs.
We have also investigated the sorts of modifications thateoue proofs of progress in
orders to avoid reproving conditions that have already le=tablished. We note that
many of our lemmas are applicable to systems that only peavishimal fairness guar-

antees.

Derivations of concurrent programs using UNITY are presémh [CM88, Kna90a,
Kna90b]. With their method, one performs refinements on tlggral specification until
a level of detail is reached where the UNITY program is ‘olongo Hence derivations
stay within the realms of specifications until the final stepwhich the specification
is transformed to a UNITY program. However, with their meth@ach specification
consists of a list of invariants and leads-to assertionsimgak it difficult to judge the
overall structure of the program. Furthermore, it is diffido decide when there is
enough detail in the specification to translate it to a progr&NITY also inherently
assumes weak-fairness is available and unlike us, are eit@bleal with other sorts of

fairness assumptions.



Example Progress Verifications

We present example uses of the theory developed in Chapteleidl 4 by verifying the

progress properties of a number examples from the litezatds a blocking example,
we verify the initialisation protocol [Mis91]. In order toedhonstrate the logic under
differing fairness assumptions, we verify the protocouassg both weak fairness and
minimal progress. We also describe an attempted proof adgram that satisfies safety,
but does not satisfy progress, which demonstrates thah#dwyt is capable of proving
that a progress property does not hold. The proof in Sectibr2 ®an be simplified by

using the lemmas in Section 4.4, however, we have chosemtormgrate some other
techniques for proving progress. We demonstrate exampke afsthe techniques from
Section 4.4 in Sections 5.1.3 and 5.3. We perform a more oeinepisive case study by

verifying then-process bakery algorithm [Lam74].
The progress properties of a non-blocking program are thighfferent to those
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of blocking programs (see Chapter 3). We demonstrate how prtaperties may be
proved for a number of simple examples, which serve as coemtemples, completing

the proofs of Theorems 3.42 and 3.43.

Contributions. The progress proofs of the initialisation protocol in Sext 5.1 and

5.2, and the bakery algorithm in Section 5.3 are novel. Theblocking programs in

Section 5.4 appear in [Don06a], but the proofs in this thesesthe improved theory from
Chapters 3 and 4, as well as techniques for proving locldtreefrom [CD0O7, CDO09].

5.1 The initialisation protocol

Our first example is the initialisation protocol [Mis91] gented in Fig. 5.1 which is
used to synchronise initialisation statemexiigit andY.init distributed over processes,
X andY. The protocol ensures thathas completed execution 8finit when process

X terminates, and vice versa, without assigning to varialidsn or beforeX.init and

Y.init. Furthermore, both processes are guaranteed to tatenin

We prove the safety property of the protocol in Section 5.thé progress property
under weak fairness in Section 5.1.2, and progress propadgr minimal progress in
Section 5.1.3. Because the procesgemdY are symmetric, we focus our discussion

on procesX only.

The details ofX.init are not given, however, we assume thanit terminates and

does not block, which may be formalised as follows:
IAx = pcx € IPCx ~~ pox € IPCy

where
IPCx = labelq0: X.init)

is the set of all labels withiX.init, including0 but notl. The subscripK in I1Ax denotes

thatlAy is a property of procesX. BecauseX andY are symmetric, for each property
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Init: pcx, poy := 0,0

Proces Processy
0: X.init ; 0: Y.init ;
1: y:= false; 1: x .= false;
2: X :=true; 1y = true;

2
3: (if y — skip fi); |3: (if x — skip fi);
4

4: X := true 1y :=true

T: T:

IAx: pcx € IPCx ~~ pcx Q IPCx

FIGURE 5.1: Initialisation protocol

Px, we assume the existence of a symmetric propytyWe follow the convention of
placing program properties under the program code.

The safety requirement of the initialisation protocol igttivhen procesX termi-
nates, proces¥ has already completed executionYoinit, and vice versa, which is

formalised by the following property:
D((pr =T = PCy ¢ |PCY) A (pCY =T = PC ¢ |PCX)) (51)

The progress requirement for the program states that bottepses eventually termi-
nate. That is, the program counters of both proce¥sasdY should eventually be

equal tor. We formalise the progress requirement in terms of leads follows:

true~- pox =7 A pCy = 7. (5.2)

5.1.1 Proof of safety

Safety is proved by annotating the program as in Fig. 5.2 eviver use sets

IPClx = IPCxU {1}

IPCly = IPCyU{1}.
Each assertion in the annotation can be trivially shown todveect by proving local and
global correctness. In a similar manner to the example ini@ed.2.3, the annotation

is used to prove that (5.1) is invariant.
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Init: pcx, poy := 0,0

ProcessX Processy

0: X.init ; 0: Y.init ;

1: y .= false; 1: x:= false;

2: {y = poy € IPCly}|2: {X = pcx ¢ IPClx}
X:=true; y:=true;

3:{y = poy € IPCly}|3: {x= pcx ¢ IPClx}
(if y — skip fi) ; (if x — skip fi) ;

4: {poy € IPCly} 4: {pcx & IPClx}
X:= true y := true

7: {poy & IPCly} 7: {pcx & IPClx}

IAx: pcx € IPCx ~~ pcx ¢ IPCx
FIGURE 5.2: Annotated initialisation protocol
5.1.2 Proof of progress (assuming weak-fairness)

The proof below can be simplified by using the lemmas in Seetid, however, we have
chosen to demonstrate some other techniques for provirgggss. The proof uses the

following properties:
O(pey =7 =Y) (5.3)
O(pcx =3 A Y APoy =3 = X) (5.4)
which state thaX; is enabled whelY has terminated, andg; is enabled iiX; is disabled.
These can be proved as in Section 4.2.3.
Becauseayy.X, = false we may prove each conjunct of (5.2) separately, i.e., prove
that each of the following holds:
Trwe E true~s pcx =71 (5.5)
Trwe E true~ poy = 7. (5.6)

Exploiting the symmetry between the two processes, we mayttee proof of (5.5) as
the proof of (5.6), hence we focus on (5.5). Using Lemma 4cgdtfadiction), (5.5)



5.1 THE INITIALISATION PROTOCOL 109

holds if
Trwe &= PoX# T~ P =T (5.7)

which, by definition ofPCy, is equivalent to
(Vipcx Trwe = PCx =1~ pCx = 7). (5.8)

The proof of (5.8) follows by case analysis on the possibleesofi noting that due to

weak fairness, each of the following hold:

Trwe = pox =1~ pcx =2 (5.9)
Trwe E pox =2~ pox =3 (5.10)
Trwe E pox =4~ pox =T. (5.11)

e Casea = 4. This case trivially follows from (5.11).

e Casei = 3. By Theorem 2.22 (transitivity) and (5.11), the proof ofstluase

follows if pcx = 3 ~» pcx = 4. We have the following calculation

pcx = 3 ~» pcx =4
= {logic}
pox =3 A (YV 1y) ~ pox = 4
& {Theorem 2.23 (disjunctiof)
(pcx =3 Ay~ pox =4) A (PCx = 3 A 7Y ~> pox = 4)
& {Theorem 2.22 (transitivity)
(Pex =3 Ay~ pox =4) A (Px =3 A Y~ pCx =3 AY)

Thus, we have the following proof obligations:

pcx =3 Ay ~» pcx =4 (5.12)
pcx =3 Ay ~» pex=3AY (5.13)
We prove (5.12) using Theorem 4.42 (immediate progressrundak fairness).

The only statement of concern in process X3, which establishepcy = 4. The

only statements in proce&éthat modify the variables in (5.12) aM and Y,
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however, both these statements preseoye= 3 A y. Thus both (4.43) and (4.44)

in Theorem 4.42 (immediate progress under weak fairnessjairsfied.

Proof obligation (5.13), is proved via application of Lem#h@2 (program count-

er) and Theorem 2.23 (disjunction) which results in theolelhg requirement:
(Vipcy Pox =3 Ay APCy =] ~» pPCx =3 AY). (5.14)

We prove (5.14) via case analysis on the valugssvérting from the end of com-

putation, i.e.j = 7.

— case j= 7. By (5.3), the antecedent of (5.14)fa&se and the proof is trivial.

— case j= 4. The proof follows via an application of Theorem 4.42 (imnzedi

progress under weak fairness).

— case j= 3. Using (5.4) the proof follows if we use Theorem 4.42 (imméelia
progress under weak fairness) to prove gt = 3 A =y A pcy = 3 ~
pcx = 3 A =y A poy = 4. We then use the result fpe= 4 and Theorem 2.22

(transitivity) to conclude the proof gf= 3.

— case je labelqY.init) U {1, 2}. These cases follow froAy (the symmetric
equivalent oflAy), (5.9), (5.10), Theorem 2.22 (transitivity) and the résul

for casg = 3.

e Casei = 2. This case holds by Theorem 2.22 (transitivity), (5.10) #relproof

of casea = 3.

e Casea = 1. This case holds by Theorem 2.22 (transitivity), (5.9) dmgroof of

casd = 2.

e Case < IPCyx. These cases follow by, Theorem 2.22 and the proofs of cases

i €{1,2,3,4} because ¢ IPCx =i € {1,2,3,4} holds.

The case analysis is now complete, which concludes our pifqmogress.
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5.1.3 Proof of progress (assuming minimal progress)

We now prove the progress requirement (5.2) assuming ontynmai progress. This
time we use Lemma 2.29 (induction). We note that althougHdineess guarantees are

weaker than in the proof in Section 5.1.2, the proof itsethisch simpler.

The proof proceeds as in Section 5.1.2, which leaves us hétiptoofs of (5.5) and
(5.6). Again, exploiting the symmetry between the procgsse may take the proof of
(5.5) as the proof of (5.6). We apply Lemma 2.29 (inductianj3.5) where the well-
founded relation is ofi<, PCY,). Because we expect the processes to terminate, the base
of (<, PCY) should be labet, i.e., the relationis < 4 <3 < 2 < 1 < i, where

I € IPCy. We have the following calculation.

true ~ pcx =71
= {Lemma 4.32 (program counte}s)

pcx € PCx ~» pcx =7
& {Theorem 2.22 (transitivity){ |Ax: pcx € IPCx ~~ pcx & IPCx}
pcx € PCx — IPCx ~~ pcx =7

{definitions ofIPCx andPCx}{logic}

(Viif1,2,343 PCx = i ~» pCx = T)
& {structure ofX, X does not contain loops

(Vi:{1,2,3,4} PCx =i ~» PCx # i)
& {Lemma 2.29 (inductior})

(Vif1,2,3.435:pcy PO =1 A PGy =] ~» (pCx =1 A poy <]) V pox # i)
& {Theorem 2.22 (transitivity) usinid\y }

(Vi1,2,3.43,j:{1,2,3.4,.} PO =1 A PGy = | ~» (PCx =1 A PGy < ]) V pCx # i)

We may prove the last step using Theorem 4.48 (immediategseginder minimal

fairness). We define

Q= (pcx=iApoy <j)V pcx #i.

For eachi € {1,2,3,4}, [pocx = i = wpx.X.Q] holds and each € {1,2,3,4,7},
[poy = | = wpy.Y;.Q] holds. Furthermore, for each pair bfe {1,2,3,4} andj €
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{1,2,3,4,7},pcx =1 A poy = = Ox.X V gy.Y; holds, due to (5.3) and (5.4). This

completes the case analysis, and hence the proof of progress

5.2 Failing progress

Our second example considers the program in Fig. 5.3, whittteisame as the program
in Fig. 5.2 but the statements labell¢thave been removed. The safety requirement of
the program is identical to the first example and the anrmtati Fig. 5.3 is used to show

that (5.1) is invariant.

Init: pcx, pey := 0,0

ProcesX Processy

0: X.init ; 0: Y.init ;

1: y:= false; 1: x := false;

2: X :=true; 2:y:=true;

3: {y=pcy € IPCly}|3: {x= pcx ¢ IPClx}
(if y — skip fi) (if x — skip fi)

7: {poy &€ IPCly} 7: {pcx & IPClx}

IAx: pcx € IPCx ~ pex € IPCx

FIGURE 5.3: Annotated initialisation protocol (version 2)

5.2.1 Attempted proof of progress

In order to prove progress, i.e., (5.2), we employ the saitialistrategy in Section 5.1.2,

which results in the following proof obligation:
(Vipcy P& =1 ~» pex =T). (5.15)

The proof for caseé = 7 follows from an application of Lemma 2.26 (implication).rFo
casei = 3 we apply our heuristic for proving progress at a guardecestant which

results in the following proof obligations:

pcx =3 Ay ~» pPCx =T (5.16)
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pcx =3 Ay ~» px=3AY (5.17)

Proof obligation (5.16) is easily proved via an applicatodTheorem 4.42 (immediate
progress under weak fairness). The proof of (5.17) howesaguires is problematic for

Y., i.e., requires correctness of
O(pox =3 Apoy =7 =Y).

Unfortunately,0(pcx = 3 A poy = 7 = y) does not hold, which shows the program in

Fig. 5.3 can deadlock.

5.2.2 Discussion

In a design setting Feijen and van Gasteren [FvG99] presemtdoer of techniques for
avoiding deadlock. However, these techniques are notcgipé to our verification ex-
ercise because we have treated deadlock as a livenesstgrégien and van Gasteren
treat deadlock as a safety property and prove invariancepoédicate that ensures at

least one statement of the program is enabled [FvG99, pg83].

5.3 The bakery algorithm

The bakery algorithm (Fig. 5.4) is an algorithm devised bynipart forn-process mutual
exclusion that ensures any process wanting to enter iisairggection is able to do so
[Lam74]. While the safety verification has been given muatutiht [Lam74, BK96,
Abr95, RBG95], the same cannot be said about progress. driséition, we prove that
the progress property of the bakery algorithm holds. Bezdle non-critical section
may contain non-terminating loops, mutual exclusion athors must inherently assume

weak fairness, and hence weak fairness is assumed for tkeeykagorithm.

Our proof is inspired by the proof sketch by Shankar [Shaild¥particular, we use
the concept of geer setand position numbeifor each process. We have formalised
the placement and assignment to the peer set, and the pselffis simpler and more

formal.
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5.3.1 Specification

The code for the program is given in Fig. 5.4. We assumePRnat = 0..(n — 1) in
an n-process system, i.e., the process ids are natural numidégusep.ncs andp.cs
to denote the non-critical and critical sections of progesespectively, which may be
composed of an unspecified number of atomic statements. Myegm uses shared
variablesTN: Proc — N andCN: Proc — B, whereTN, denotes the ticket number of
procesd, andCN,, determines whether or nptis choosing a ticket number (executing
lines 2-3). Local variablen, is used to calculate the value D, and variable, is used

to iterate through the loop at.

To determine if a process, say is ahead of procegs checking the value oT N,
alone is not sufficient because it is possibleTdk, to be equal ta'N,. A tie is broken by
also considering the value of the process id, i.e., the pragriso uses a lexicographical
relation on pairgTN,, p). Thus, if (TNy, q) < (TNy, p) holds, then either procesghas
a smaller ticket number thgm or bothg andp have the same ticket number, lohas a

smaller process id. Note thaIN,, q) = (TN,, p) is only possible ifp = q.

Before executing.cs, proces® allocates itself a ticket number that is larger than
the ticket numbers allocated to all other processes (lin@s Zhen, having determined
that no other process is ahead of itself (loopgt proces9 enters its critical section
l.e., executep.cs. The loop aps ensures that each procegse Proc is not currently
choosing a ticket number (line 7) anglis not ahead op, i.e., (TN, V,) is not smaller
than(TN,, p) (line 8). If TN,, = 0, this indicates that, has not chosen a ticket number,
and becauseCN,, held at line 7, if proces, chooses a ticket numbeFN,, > TN, is

guaranteed to hold.

We have also annotated the program and included an assigjtovarxiliary variable
PSatp;, wherePS, denotes the peer set of procgss/Ve present the details &fSand

the auxiliary assignment t8Sin Section 5.3.2.

For a procesp, we define sets

N, = labelg0: p.ncg — {0}
C, = labelg10: p.cs) — {10}
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to identify the labels within the non-critical and criticsgctions ofp, respectively. We

assume that the critical sectionmferminates, i.e.,
PG € Cy U {10} ~» pg, = 11. (5.18)

The progress requirement of the program is that any prodegscompletes its non-

critical section is able to enter its critical section, whioay be expressed formally as
Live = pg, € 1..10 ~» pg, € C,.

PropertyLive clearly holds if the loop aps terminates and individual progress holds at
Pr, Ps andpyg. It is straightforward to see that the loop terminates us@gantN — v,
which is local to procesg. Furthermore, individual progressgtis trivial due to weak

fairness. Thus we obtain the following proof obligation:

pc € {7,8} ~ pG, & {7,8}. (5.19)

We use the following properties of procgss the proof

O(pg, € 2.4 < CNy) (5.20)
O(pg, € NpU0..3 < TN, = 0) (5.21)
D(vq:Proc—{p} (TNpa p) 7£ (TI\IQ7 Q)) (5'22)

Invariant (5.20) states thatis in a ‘choosing’ state ifpg, € 2..4, (5.21) states that
does not have a ticket number g€, € N, U 0..3, and (5.22) states that the priority of

process, i.e., the value of TN,, p) is unique.

5.3.2 Proof strategy

The processes that have chosen a ticket number form a quéeee whe position of
process in the queue depends on the p@iN,, p), i.e., the ticket number and process
id pair. The idea of the proof is to show that the process atrtre of the queue always
executes its critical section, and furthermore each psoeesntually reaches the front of

the queue. The program does not use a queue data structurehasnstead, following
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Shankar, we lelPos, be the relative position of proceg#n relation to the other processes

that have chosen a ticket number [Sha04]. Thus, we define

Pos, = siz€{g € Proc | TNy # 0 A (TNg, 0) < (TN, p)})
which determines the number of processes bgforethe queue.

Because it is possible for two or more processes to choossathe ticket number,
a process can enter the queue in front of processes that haaelyachosen a ticket
number (thus impeding their progress). Hence followingrikag we distinguistpeer
processeas processes that are choosing a ticket number wlslalso choosing a ticket
number. A peer process pfmay choose the same or smaller ticket number fhamnd
thus enter the queue befgpeeven ifp is already in the queue. The key observation is
thatp can be impeded by procegsifter entering the queue onlydfis a peer op, which

is expressed by the assertiorpat

In order to identify the peers of procegswe augment the program with auxiliary
variablePS which is updated gb;. This enablep to determine the processes that are
still choosing a ticket number whemhas chosen one. Procgsslso removes itself
from eachP§, to indicate thap has chosen a ticket number. In particular, we augment
the assignment gt; with auxiliary assignmenPsS := (A . if 4 # p then P§, —

{p} else {r € Proc — {p} | CN:}). After execution ofps;, PSis updated so that is
removed from the peer set of @l# p, while the peer set gb is updated to include all

processes for which CN. holds.

We state three further properties involviRgs,

O((siz€PS), Pos) = (0,0) = (Vaproc—(p) (Vo PGy) # (N,6)))  (5.23)
(Vaproc (Vpproc—{q} Sto-((Siz€PS), Pog) = (0,0)))) (5.24)
O((sizePS), Pos,) = (0,0) = (Ygproc—{p} PG = 8 A Vg = P = —0q.0s)) (5.25)

By (5.23), if proces$ has no peers and no process is aheadiofthe queue, then no
procesg) can be executings with vq4 = N, by (5.24),sizPS) = 0 A Pog, = 0 is
stable in allq # p, and by (5.25), iizgPS)) = 0 A Pos, = 0 holds, all processeg+# p
are blocked at)s during thepth iteration of the loop ad.
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5.3.3 The proof

The progress requirement holds if (5.19) holds. The idea®proof is to show that if
PG, € {7,8} andpis first in the queue, i.e(siz&PS), Pog) = (0,0) then eventually
PG ¢ {7,8}. We must also show that each process reaches the front otitheqi.e,

siz§PS) > 0 VvV Pog, > 0 ~ (sizdPS),Pos,) = (0,0). That is, by Theorem 2.22
(transitivity), the proof of (5.19) follows if each of thelfowing hold.

PG = 7 A (sizePS,), Pos,) = (0,0) ~» pg, # 7 (5.26)
PG = 8 A (sizePS), Pog) = (0,0) ~» pG, # 8 (5.27)
sizgPS,) > 0 v Pog, > 0 ~ (sizePS), Pog) = (0,0) (5.28)

Proof of (5.26). Letq = v,. Progress ap; is impeded by guarehCN,. We show
that(5.26) holds for any value of|. The proof is complicated by the fact that the guard
of p; is not stable in procesg becauseCN,; may be falsified. We use Lemma 2.29
(induction), which results in proof obligation (5.3.3) bel We now describe the well-

founded relation that we use.

A well founded relation oPC, alone is not sufficient due to the loop@t Thus,
we consider a relation that also takgsinto account because the last statement in the
loops atqg increases the value of, andgs terminates wheng = N. We define a well-
founded relation( <, PC,), that corresponds to the reverse execution order with
based because statemeqy increases the value of. That is, the well-founded relation

onPCyis
9<8<7<6=<5<4<3<2<1<n=<0=<11=<¢ <10
wherenj € N, andcj € C,. We define
loopPC=6..9

to be the labels within the loop g§. Noting that the loop at; terminates wherng = N

and thaty, is incremented by the last statement of the each loop, weadfefollowing
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well-founded relatior{<, (0..N, PC,)), where

Var PG) < (Vg, PCq) = (PG ¢ 100pPCA peg < pey) v (5.29)
(pgy € 100pPCA Vg < N A
(Vg < VgV (Vg = V4 A PG < PCy)))
Thus, (v, pg;) < (Vg, PG) holds if g is not executing withiroopPCandpc, < pg
holds, orq is executing statements withloopPC vq < N holds, and eithey is in-
creased ovg is unchanged anpic, < pg holds. Although the base ¢k, PCy) is 9, the
base of(<, (0..N,PC,)) is (N, 6), i.e., whernvy = N andpg, = 6, the value of(vy, pg)

can no longer be reduced.

Now, let us define

PP = pg, =7 A (siz§PS,), Pos,) = (0,0)
which is the predicate on the left hand side of thein (5.26). Application of Lem-
ma 2.29 (induction) to prove (5.26), results in the follog/proof obligation:
(Vno.Njipcg PP A (Vg, PG) = (N,]) ~ PG # 7V (PP A (Vg, pG) < (N,])))
which holds by Lemma 4.81 if
(Vr0.Nj:(PCq—Ng)~Cq PP A (Vg PGy) = (N, ]) ~» PGy 7# 7V (PP A (Vg, PG) < (N, )

(5.30)

The proof of (5.30) now follows by case analysis on the pdssiblues oin and;.

e Caseg € 1..5U {11}. These cases are proved using Lemma 4.65 (deadlock
preventing progress) becausg, = | = g4.9; holds and eacky; is guaranteed to

reduce the value g, j) and preserv®P, i.e.,
[PP A (Vg PG) = (N,]) = o0 A WG (PP A (Vg, PGq) < (n,])) ]

e Caseg € 7..9. These cases hold by Lemma 4.65 (deadlock preventing msgre
because by (5.20p¢, € 6..8 = —CN, holds. So either the value 6%y, pg) is

reduced andPP is maintained, op is executed angc, # 7 is established, i.e.,

[PP A (vq, PCq) = (n,]) =
(9p-P7 V 9g-0) A WPo.P7. (PG, # 7) A Wpy.q.(PP A (vg, pcg) < (N, ) .
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e Casg = 6.

—If n € 0..N — 1, the proof follows by Lemma 4.65 (deadlock preventing
progress) because like cages 7..9, by (5.20),pg, € 7..9 = —CN, holds.

— If n = N, the proof holds because by (5.28)(PP A (Vg, PG) = (N, 6))
holds.

Proof of (5.27). Becauseg, = 8 A (sizdPS),Pos,) = (0,0) = g,.ps holds, due
to (5.24) and weak fairness, the proof follows via a strdmimard application of Theo-

rem 4.42 (immediate progress under weak fairness).

Proof of (5.28). We use Lemma 2.29 (induction) and a well-founded lexicoki@p
relation on the possible values @iz PS,), Pos,), which results in the following proof

obligation:

(sizgPS,), Pog) = (ki, ko) ~ (5.31)
(sizdPS), Pog,) = (0,0) V (siz&PS). Pog,) < (ki ky).
Let us assume tht k; andk, are non-zero natural numbers. Due to weak-fairness, any
procesgy such thatlCN, holds eventually chooses a ticket number (assigis\), and

hence the following holds:
sizgPS) = k ~» sizgPS,) < k. (5.32)
We perform case analysis on the possible valusizgPS,), Pos,).
e Case(sizgPS), Posg) = (ki, k). By (5.32),
(sizdPS), Pos) = (ki, k) ~~ (siz€PS), Posgy) < (Ki, ko)
which, recalling thak;, k, > 0, implies (5.31).
e Case(sizgP§), Pos) = (0, k). We use the following invariant:
O((sizePS), Pog,) = (0.K) = (Tgproc—ipy TNg # 0 A POy = 0))  (5.33)

which gives us the following calculation, where we recadltth k; > 0.
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(sizePS), Pos,) = (0.k)
~»  {Lemma 2.26 (implication) using (5.3B)instantiate existentiél
(siz§PS,), Pos,) = (0,k) A TN; # 0 A Pog, =0
~+  {case analysis osiz§PS,) }
(sizdPS), Pos) = (0,k) A TNy # 0 A
((sizePS;), Pos) = (ki.0) V (siz&PS,), Pos,) = (0,0))
~»  {inductive application of (5.32)
(sizdPS), Pos,) = (0,k) A TNy # 0 A (siz€PS)), Pos,) = (0,0)
~»  {Lemma 2.26 (implicatior}}{(5.21)}
(sizdPS,), Pog) = (0,K) A pgg € CNyU 4..11 A (sizePS)), Pog) = (0,0)
~  {(5.26) and (5.18)
(sizdPS), Pog) = (0,k) A pgg = 11 A (siz€PS)), Pos;) = (0,0)
~»  {weak-fairnesp

(sizgPS,), Pos,) < (0,k)

5.3.4 Discussion

The bakery algorithm solves the mutual exclusion problemmforocesses by establish-
ing a relation on the ticket number and process id of eachegsmyowvhich essentially
allows one to form a queue of processes waiting to enter thigical section. Although
processes may join the queue ahead of other processessbecauocess can only be
impeded a finite number of times, we can show that each prosesdse to enter its

critical section and make progress.

Although the program is several times more complex thanrtii@lisation protocol,
the proof is relatively straightforward after introducitige appropriate auxiliary assign-
ments, which is used to construct the well-founded relafidre longest part of the proof
is the case analysis on the values@fN, PC,), which was made more complicated by
the loop atgs, but each of the cases could be discharged using Lemma 4e@8I¢tk

preventing progress).
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5.4 Non-blocking programs

In this section, we provide example proofs of a program thiatak-free but not wait-free

(Section 5.4.1) and a program that is obstruction-freenbtitock-free (Section 5.4.2).

5.4.1 Alock-free program

Let £ be the program in 5.5. In this section, we prove thas lock free, but is not wait
free, thus completing the proof of Theorem 3.42. Lock-fgagroofs are complicated
because it is possible for a process to continually retryojieeration being executed.
Further complications are introduced because it is passdtonstruct lock-free pro-
grams where a process chalp complete the operation of a different process, causing

additional points of interference (see [CD07, CD09] forails).

We use the technique of Colvin and Dongol [Don06b, CD07, Jb@fich allows
the program-wide lock-freedom property to be proved by erarg the execution of a
single process at a time. An advantage of this method is tikati@aved executions of
two or more processes does not need to be considered, wihbg¥sdahe technique to
scale to any program with an arbitrary finite number of preess A second advantage
is that the proofs are supported by the PVS theorem provelvirCand Dongol have
shown the effectiveness of their technique by proving thaumber of complicated
examples from the literature are lock-free [CD0O7, CD09].wdwer, because the logic
has been specialised for proving lock-freedom, we do ndudecthese proofs in this
thesis. Instead, we consider a simpler example to highiighinain ideas behind Colvin

and Dongol’s technique.

Each operatioinc, in £ is responsible for incrementing the value of global vagabl
T. A process, sap, executingnc, stores the value oF in local variable at, (line X2).
Then,T is updated ta, + 1 if T has not been modified by some other process since it was
read atX2 (line X1). If T has been modifiegh retriesinc, by returning toX2 in order to
re-read the value of*. After X0 is executed, operatioimc, exits, andp returns to idle

(see Section 3.3.1). Recall that an idle process may begrrugion of a new operation.

YIn practice, the compare-and-swap guard atan be implemented using a CAS primitive [MS96].
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The progress function ov&C is defined as follows:
II = (Apc ifj =X0then {idle} else {X0}).

Hence a process 20 makes progress if it becomes idle, while all other procesaest

reachX0 (from which it may become idle).

Most of the work using Colvin and Dongol’s method involve$igieag an appropriate
well-founded relation. To facilitate a proof that does nosider interleaved executions
of two or more processes, the well-founded relation takesuadiary interference de-
tection variable intd,, into account, and to ensure that a process is on track to make

progress, the relation also considers the program coypggeiCDO09].

The value ofintd, in List, # T. If intd, holds, p determines that some process
has made progress sinpeexecutedX2, and hence may retry thelnc, operation. If
—intd, holds, no interference has occurred, and hgnoeist proceed to completirigc,
itself, which we can determine by consultipg,. A crucial observation is that in a lock-
free program, processes that cause interference (impéée ptocesses from making
progress) are those that make progress themselves.ifra procesg incrementsT at
X1, it impedes all other processgs# p at X1 from reachingX0, and causes to retry
the loop. Howeverp, which successfully updat@smakes progress according libby

reachingXo.

L is lock-free wrt II. The well-founded relation is based on the following observa

tions.

1. Interference is judged afté2 has been executed, i.@g, = X1 A —intd, holds
and some process incremeifitso thatt, < T holds (and hencpg, = X1 A intd,

holds).

2. The only statements that cause interference are therstate that make progress

according tdl.

3. If p has been interfered with, some process must have made pspgrel hence

is allowed to retry the loop iinc, and hence re-establigh= T.
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4. If p has not been interfered with, thermust proceed to making progress itself.

Using the technique of Colvin and Dongol [CD0O7, CD09], we aefProcinfo =
B x £.PC and define

A = L.Proc — Proclnfo

Foranys € A, we letd, = (intd,, pG,) for any process. The first value o6, determines
whether or not the value @f is equal toTl, and the second value is the program counter

value. The (partial) well-founded relatigr, Procinfo) is defined as follows:
(false X1) < (true, X2) < (true, X1) < (true, idle).

Values ofProcinfothat are unreachable ifh have been omitted from the relation. Note
that starting a new operation is regarded as making progreessding tq <, Procinfo).
Because lock-freedom is a property of the whole program, westndefine a well-
founded relation oveA, so that all processes are taken into account. The wellefedin

relation(<, A) is defined for any twa, v € A as

)<v& (Elp:L.Proc 5p <A (vq:L.Proc—{p} 5q = 'Yq))-

Thusé < ~ iff one of the processes, say gets closer to completinijmc, and all the
progress of all other processes remain unchanged, whicinsypebas not interfered

with any other process.

InstantiatingW to £.PC andK to pc, in Definition 3.37, we hav&S= L.Proc —
L.PC and the proof that is lock free follows.

(VssssTr A = pc = ss~ (Jpproc PG € 11.8%)))
& {Lemma 2.24 (anti-monotonicity)

(VssssTr.A = true ~ (Jpproc PG € 11.5%))
= {Lemma 2.29 (inductior})

(Vssss(Vsa TFAE S =M~ M <8V (Jpproc PG € 11.5%)))
=  {definition of ¢}

(Voa TTAEI =M~ M <3V (Foproc 0p(2) € T1.My(2))))
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& {Theorem 4.48 (immediate progress under minimal progfess)

(Vaa (V5 0 =M = (pg =i = Wpp.pi.(M < 8V (Fpproc p(2) € TL.Mp(2))))
= {logic, definition ofd}

(\V/p:Proc,(S:A 0=M= pr.p(gp(g).(M <0V (Elp:Proc 5p(2) € HMp(Q))))

Because the processes are identical to each other, thefphowafs by case analysis
on the possible values o6f for an arbitrary process. It is straightforward to show that

the following holds:
O(pG € {X2,X0,idle} = t, #T)

which means that the proofs of casgse {(false X2), (false X0), (false idle)} are
trivial. Cases, € {(true, X2), (true, X1), (true, idle) } hold because execution pfrom
such a state is guaranteed to reduce the value tifis is because the value &f is re-
duced and the value 6f for q # pis remains unchanged. Finally casgs {(true, X0),
(false X1)} hold because execution pis guaranteed to establigf(2) € I1.M,(2), i.e.,

p makes progress accordinglio

L is not wait-free wrt II.  To show that the program is wait-free, we must prove (3.35),
l.e., that every process makes progress. However, thestsex infinite trace and
processp such thatpg, = X2).s, for each even valua and(pc, = X;).s, for each odd

u. Hence the program is not wait free.

5.4.2 An obstruction-free program

Let O be the program in Fig. 5.6. We prove tlfats obstruction-free, but not lock-free.

The program has a shared variaBlef type Boolean and two operations; andY,.

The progress requirement as before is that each operatiohes a point from which
it can terminate, i.eX0 andY0. Thus our progress function is @.PC and is defined

as follows:

II = (A pc ifj € {X0, Y0} then {idle} else {X0,Y0}).
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O is obstruction-free wrt I1. We consider obstruction freedom of an arbitrary pro-
cessp. To apply Definition 3.40, we takK to bepc andW to be O.PC. For any
ss O.Proc — O.PC, traces € Tr.O andq # p, if s = pc = ss~ pg # sg;, then
(3.41) is trivially satisfied, thus, we consider traces fdrieta g does not execute any

statements. Due to minimal progress, the following clehdigs:
st (Ygproc—{p} (Fipcy (PG = ))) = B (PG € {X0, Y0, idle}).

That is, if no process different fromtakes a stefp makes progress by reachiig, YO0,

oridle.

O is not lock-free wrt TI. This holds because an execution of statem&htan be
interleaved in between any two consecutive executiong2o&nd Y1, and vice versa.
Hence there exists a trace in which none of the processes pnaigess with respect to
I1.

5.5 Related work

Chandy and Misra present verifications of the progress ptiegeof a number of ex-
ample UNITY programs [CM88], however, their approach asgféom ours due to the
different context of UNITY, and non-blocking programs am@ nonsidered. TLA di-
rectly incorporates LTL into the framework [LamO02]. Althglu progress properties can
be easily specified in TLA, the proofs themselves are morkcdif, which Lamport

justifies by demoting the importance of progress as follows.

It [Liveness] typically constitutes less than five percehtaspecification.
So, you might as well write the liveness part. However, whaaking for
errors, most of your effort should be devoted to examinirgggafety part.
[LamO02, pgl116]

We believe that when writing programs, reasoning aboutnes®yis indeed impor-
tant. For many programs, a large percentage of code can lo¢edeto progress. For

instance, consider Feijen and van Gasteren’s comment 8aider’'s algorithm:
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. we wish to point out how little of the algorithm’s code ist@ally con-
cerned with the (partial) correctness — or safety. [FVvG99,
pp90-91]

Obtaining a program that satisfies progress is not necgssarial, even when safety
already holds [GDO05].

We have shown that the logic from Chapter 4 can be used to)safety and prog-
ress. However, our ultimate aim is to use the theory to perfmogress-based program
derivations in the style of Feijen and van Gasteren [FvG@8iich is the subject of
Chapter 7. In particular, Chapter 7 contains a derivatiothefcorrect version of the

initialisation protocol from the incorrect version usingpgress-based arguments.
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Init: pc, CN, TN := (Aproc 0); (Approc 1a1SE), (Approc 0)
Procesp
!

0: pncs;
1. CNp:=true;
2. my:=maxTNq|qge€ Proc};
30 {(Vq (Mp,p) < (TNg,0) = p € PY)}

TNy, PS:=

My + 1, (Aqproc If 4 # Pthen PS, — {p} else {r € Proc — {p} | CN}) ;

4: CN, := false;
5 V=0,
6: dovp<N-—
7: (if =CNy, — skip fi) ;
8: (if TNy, =0V (TNp, p) < (TNy,, Vp) — skip fi) ;
9: Vp:i=Vp+1

od;
10: p.cs;
11: TNp:=0

]

(5.18)p: PG € Cp U {10} ~» pg = 11
(5.20)p: O(pG € 2.4 < CN,)
(5.21)p: O(pcy € Np U 0..3 < TNy = 0)

FIGURE 5.4: Then-process bakery algorithm
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Init: pc,t := (Ayproc idle), (Approc —1); T:=10

Inc, =
4]
X2: ty:=T;
Xl: ife(T=ty—=T:=t,+1)
X0 exit

FIGURE 5.5: A lock-free program

Init: pc := (A proc idl€)

Xp = Yp =
X2: B:=true; Y2: B:= false;
X1: ifeB— Y1: ife -B—
XO0: exit YO: exit

efi
]

FIGURE 5.6: An obstruction-free program



Program refinement

Feijen and van Gasteren describe how programs may be ddromdan initial spec-

ification by carefully considering their safety properti{€s¥yG99]. These techniques
are extended by Dongol and Mooij so that one may also congidgress properties
[DMO6, DMO08]. A derivation starts from a program in which tbesired properties of
the code are expressed via queried properties, and theggmatierive a program with
additional code but no queried properties. In their methatthough each safety and
progress property is given formal consideration, the @ions themselves are informal

because a program may be arbitrarily modified.

In this chapter, we formalise the derivation techniquessijela and van Gasteren and
Dongol and Mooij and relate their work to refinement [dRE9Eee Section 6.5 for a
more complete survey of related work.) The concept of a qdgrroperty is formalised

as an enforced property, where a program with an enforcqeepois a program whose

129
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traces are restricted to those that satisfy the propertygidyng a formal meaning to
enforced properties, we may define refinement in the normgl kweg each observable
trace of the refined program with stuttering removed mustrbeteservable trace of the
original specification with stuttering removed. Becausedrrefinement is difficult to
work with in practice and because the state space of the defirmgram may change,

we also relate our techniques to data refinement.

Further formalisation is provided through the use of framttements (see Chap-
ter 2). A statement, s&§; with a frame variable, sayof typeT, (writtenx-[S]) behaves
asS, but in addition may modifi to any value withinl. We present lemmas that allow
one to introduce variables to the frame of a program as welefise programs with

framed statements.

In Section 6.1 we present our notions of trace and data reéngrand show that if
C data refinesd, thenC also trace refinegl; in Section 6.2, we formalise the concept of
an enforced property; in Section 6.3 we define refinementdrptiesence of frames; in

Section 6.4 we describe how a statement may be introducefiama.

Contributions. The work in this chapter was developed in collaboration wéh
Hayes. The concepts in Section 6.1 are not new. Our treatimenspired by Back
and von Wright [Bac89a, BvW94] and Morgan [Mor90]. Howewire formalisation
of enforced assertions (Section 6.2) and the theorems égram transformation (Sec-

tions 6.2 and 6.3) are novel. The work in Section 6.2 and &e@i3 is from [DHO09].

6.1 Trace and data refinement

In this section we review trace refinement (Section 6.1 tHiement refinement (Sec-
tion 6.1.2) and data refinement (Section 6.1.3) in the camtiethe programming model
from Chapter 2.
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6.1.1 Trace refinement

To show that a program trace refines another, one must dissin¢gheobservablevari-

ables of the program (variables that interact with the emrmient) fronprivatevariables
(those that are not visible to the environment). Hence wendefiOv be the set of ob-
servable variables in progratd. Although we cannot observeg, we can observe
whether or not a procegshas terminated, and hence we assume the existence of a spe-
cial observable variableéerm,, whose value is a Boolean equalgq, = 7. For a state

o of program.A, we defineobs,(c) = A.Ov < o to be the function that restrictsto

the observable variables, whe®& < RRdenotes the domain restriction of relatiBiR

to setSS

In order to restrict the trace of a program to the observables, we define function

rP (remove private state):

P 4: Seq(Z\T/AR) - SGQ(EL.Ov)
such that for any sequences of sta@sdt, the following holds:

S=rP4(t) = dom(s) = dom(t) A
(Vudomy (l# T=su=0bsy(t)) A (lu=T=s=1)).
Recall thato) . (VAR— VAL) U {1}.

Given thats = rP 4(t) for some tracé of a programA, it is common forstuttering
to exist withins, i.e., consecutive states, s,,; such thats, = s,,;. Statess, and
Su.1 are stuttering exactly when transitign— 4 t,,; does not modify any observable
variables. While a finite number of consecutive stutterioigs, may be represented by
a singles,, if s, consecutively stutters an infinite number of times, we weNer observe
a change state i, and hence we treat infinite stuttering as divergence. Itnqodar, if
S, consecutively stutters infinitely often, removing the tuhg froms should result in

a sequence whose second last elemegtasnd last element i$.

We define function'S (remove stuttering) that removes finite stuttering from a se

guence of states:

rS:seq(X') — seq(Xh)
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Note that the given sequence may be divergent (its last stayebe?), in which case
the sequence obtained after removing stuttering will aksalikergent. For a sequence
s, our strategy for definingS will be to construct a sequence of sequen&essuch that
s=K(0)"K(1)"...,i.e., the concatenation of all the sequencds is equivalent tc.
Furthermore, for each indexe dom(K), K(u) is a finite or infinite sequence repeating
a single stater € ran(s), i.e., dom(K(u)) € N A (3,.» ran(K(u)) = {o}) holds.
Finally, foru € dom(K)™, we require that the range of eaisliu — 1) is different from
K(u). Thus, for example, i§ = (x,X,V,Y, z,Z 2), thenK is ((x,X), {y, V), (z,z 2)); and
if s=(X,XVy,y,2,2...2...),i.e.,zis repeated infinitely often, the is ((x, x), (y,y),
(z,z,...)).

For any trace of a program, ift contains infinite stuttering, the infinite stuttering
must occur at the end of the sequence. Thaisnot of the form(s ™ (N x {¢})) "¢’
wheres ands’ are sequences of statéd] x {¢}) is an infinite sequence that repeats

states, and”" is sequence concatenation. Hence we define
cat: seq(seq(X1)) + seq(XT")
so that the following holds:

(Vidom(ky) dom(K(u)) =N = dom(K) =0..u) = (6.1)
(Ysdom (k) (Vuedom(k () CaLK)((Sig sizeK(i))) +v) = K(u)(v))).

The antecedent of (6.1) ensures that the only infinite sesguesthinK is the last se-
quence inK, while the consequent of (6.1) ensures that the elemerdat{i) andK
match up. As an example, K = ((x,x),(y,y), (z,zZ 2)), thencat(K) = (X,x,y,Y, z,
z,z), and for examplé¢cat(K))(3) = K(1)(1).

For sequences of stateandt, we sayt = rS(s), i.e.,t is s with stuttering removed
if we can find aK such thas = cat(K); for eachu € dom(K), ran(K(u)) is exactly the
singleton sef(t,}; and for eachu € dom(K)", ran(K(u — 1)) # ran(K(u)). Further-

more,

e if K is infinite, thensis infinite but does not contain infinite stuttering, and heenc

t must be infinite,
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e if K is finite andlast(K) is infinite, thens must contain infinite stuttering, hence
we require the size dfto be one larger than the size I¢f and forlast(t) to be

(to indicate divergence), and

e if K is finite andlast(K) is also finite, thers represents a terminating execution
(and hence does not contain infinite stuttering) thus, weireghatdom(K) =

dom(t).

So, for example, iE= (X, X, Y, Y, X, X, Y, Y, . ..) thenK = ((x, X}, (Y, V), (X, X), {V,¥),...)

andrS(s) = (XY, X, Y,...);if s= (X XVy,Y,222z...,Z...) thenK = ((x,x), (y,y),
(z,z,z,...))andrS(s) = (X, ¥,z 1); and ifs= (X, X,Y,Y, z, z 2) thenK = ((X,X), (y,Y),
(z,2,2)) andrS(s) = (x,Y, 2).
Formally, for any two sequences of stagas seq(X!) andt € seq(X1),
t=rS(s) =
(Fk:seq(seq(=)) (Vudom(k) ® dom(K(u)) =N = dom(K) = 0..u) A (6.2)
s= catlK) A (Vidom() ran(K (W) = {t(U)}) A (6.3)
(Vutomeiy+ Tan(K (U — 1)) # ran(K(u))) A (6.4)
(dom(K) = N = dom(t) = N) A (6.5)
(dom(K) # N A dom(last(K)) = N = (6.6)
dom(t) = 0..sizgK) A last(t) = 1) A
(dom(K) # N A dom(last(K)) # N = dom(t) = dom(K))). (6.7)

Conjunct (6.2) ensures that tleat definition is applicable, i.e., that satisfies the
antecedent of (6.1). Conjunct (6.3) sets up a sequence eéseg¥ so that the concate-
nation of the elements & equalss, and furthermore each sequenc@) is a sequence
of t(u) repeated some number of times. Conjunct (6.4) ensuresdabbkdu — 1) and
K(u) are sequences of different states. Conjunct (6.5) saysftiats infinite, thent
must be infinite; conjunct (6.6) says thaifis finite, but the last sequence kis in-
finite, thent is a finite sequence that ends in divergence; conjunct (&yd that ifK is

finite and the last sequenceknis also finite, thert must be finite and not diverge.
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A program( trace refines program if each observable trace 6fwith stuttering

removed is equivalent to some observable tracd wifith stuttering removed.

Definition 6.8 (Trace refines)If .A andC are programs, thei trace refines4, written
A Cq C, iff (Verre(3s1r.a rS(rPa(S)) = rS(rP4(t)))).

Trace refinement allows one to develop a concrete progranalieats if the abstract
program aborts. Furthermore, if the abstract program suffem infinite stuttering,
then the concrete implementation may also stutter infinibdlen. Note that if every
trace of the abstract program stutters infinitely, then evwesce of the concrete will
also stutter infinitely. However, an aborting abstract paog may be refined by a non-

aborting program by reducing the set of possible traces.

Trace refinement preserves temporal properties giventtbgiroperty does not men-

tion theO operator.

Lemma 6.9. [Gro07] Supposed andC are programs and F is a temporal formula that

does not contain the) operator. If A Cr, C andTr. A = F, thenTr.C |= F.

The following lemmas trivially hold for trace refinement.

Lemma 6.10(Trace inclusion) For programsA andC, if Tr.C C Tr.A then A C+; C.

Lemma 6.11.1f 4, B andC are programs, then the following hold, i.e., trace refinemen
is a pre-order.

(Reflexivity) ALCH A

(Transitivity) A Cq, BandB C+, C, thenA C+, C

It is clear that if the abstract program does not diverge) trgy trace refinement of

the program cannot diverge. This is captured by the follglamma.

Lemma 6.12(Non-divergence) SupposeA is a non-divergent program and C+; C,

thenC is also non-divergent.
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6.1.2 Statement refinement

We first define refinement between two sequential statemArdgtatemens, is refined
by a statemen& iff any behaviour ofS; is a possible behaviour &,. Note that, due
to blocking, refinement of a statement in prograinto give progranC may not imply a

trace refinement.

Definition 6.13 (Statement refinement [Mor90]Buppose Usand US are unlabelled
statements; anll is a state space. We say U@finesUS, (written US C US) iff

Similarly for labelled statements L&nd LS executed by process p, L&finesLS,
(written LS, C L) iff (Vrpy [WP.LSi.R= wp,.LS.R]).

If US, C US andUS C US,, we writeUS, O US.. Note thaUS, may block more often
thanUS, (strengthen the guard), reduce the non-deterministhSyf or may terminate

more often thaJS,. (Similarly, LS. andLS,;.)

Lemma 6.14. For any statements;&nd S, the following holds:
1. (Reflexivity) SC S
2. (Transitivity) fSCE S;and S C S;,thenSC S
For statementS, andS, and predicat®, we define:

SNS = iftrue— S true— S fi
IP| = (if P— skip fi).

i.e., S NS, is thedemonic choicketweenS, andS,. We use statement to mean unla-

belled or labelled statement. The following is a standasdilteof refinement calculus
[BW9S].

Lemma 6.15(Statement refinementpuppose IFS=if | (B, — ) fi is a statement
where each Bis a predicate and Sis a statement; x is a variable of type T;, S, and

S; are statements; and P and Q are predicates. Then, each obllogving holds:
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H

. (Guard strengthening)
(a) skip C |P]
(b) SCifP— S fi

(c) |P| C |Q], provided[Q = P]

N

. (Reduce non-determinism)

(@) IFS T [By); &

(b) x:e T C x:=v, providedve T]|

w

. (Monotonicity) If $ C S; then
@ S; SCES; S

b) S;SCS; S
() SNSCSNS

N

. (Distributivity)

@ (S1S); SO (S; $)N (S S)
(b) S; (SNS) O(S; SN (S; S;), provided $is conjunctive
© S; ([ S) T[S Sy where | is a non-empty index set [Sek08]

o1

. (Commutativity)

@ [P; QB [PAQIB(Q); [P]
(b) SNSTSNS

Lemma 6.16. For any conjunctive statement S and predicate P,
S [P] C [wpSP; S
Proof. For any predicat®, we have:

wp.(S [P]).R= wp.(|wp.SPJ; S.R
=  {wpdefinition}
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wp.S(P = R) = (Wp.SP = wp.SR)

{logic}
wp.S.(P = R) A wp.SP = wp.SR

=  {Sis conjunctivé

wp.S((P = R) A P) = wpSR
= {logic}
wp.S.(P A R) = wp.SR

{wpis monotonig¢

true ]

Lemma 6.17(Absorption) Suppose Band B, are predicates; x is a variable of type T;

c; and g are constants. Then the following hold:
1. |B:]; |B:2] O |B:], providedB, = B;]
2. x:eT, x:eTOxXx:eT
3. X:=C;; X:=C OX:=0
Proof. The proofs are trivial exercises ofp reasoning. =

The following lemma allows one to introduce and remove expinention of the

guard of a statement with impunity.
Lemma 6.18(Guard) For any labelled statement m process p, pO |gy-pi|; Pi-

Proof. The proof follows by definition oivp for labelled statements. 0

The next lemma states that one may introduce a statgmgivien guard-gp.p;.
Lemma 6.19(Disabled guard)If p; is a statement, thefrgy.pi| T |—0o.pi|; Pi.
Proof. For an arbitrary predicate, we have

Wpo-([~Gp-pi); Pi)-R
{wp definition}{definition ofg,}

wp,.pi.false= wp,.pi.R

{wpis monotonig {logic}

true



138 PROGRAM REFINEMENT

Therefore, for any predicat® wp,.(| ~0p.pi]).R= Wp,.(|~0p-pi |; pi)-R O

The next lemma for propagating guards is from [BvW99, pg29eke Definition 4.9

for definitions of conjunctive and disjunctive.

Lemma 6.20. For a statement S in process p and predicates P, Q

1 ([P SES [Q)) = ~P= wp, S(=Q)
2. (S [P]C[Q]; S = (t,.SN Q= wp,.SP), provided S is conjunctive

3. (§ [P] C|Q; § = (Wp,.S(—P) = —-Q Vv wp,.Sfalse), provided S is disjunc-

tive

6.1.3 Data refinement

During program refinement, it is often necessary to perfodata refinementwhere the
representation of the private (non-observable) stateesplees program changes [Bac89a,
MV92, BvW99]. For example, the program counter of a proces®t observable, and
hence if a new control point, s&y is introduced to a process, spythe possible values
of pg, in the concrete program is increased to inclédé\ more complicated example
might involve replacing an abstract set by a concrete aredg type. Recalling that

7 € PC,, for a programA, we define

stm(A) = {(p,i) | p€ A.Proc Ai € PC_}.

To prove data refinement between an abstract progdaamd a concrete program
C, we must partition the atomic statementCohto those that have and do not have a
corresponding abstract statement. The labels of the atstiatiements within a process
are unique, however, labels may be re-used in between @egdse., it is not true that
for processep # g, PC, N PCq = {}. Thus, we define setaain(C) andnew(C) that

contain pairs of typ@roc x PC such that each of the following holds:

1. main(C) C stmit(A)



6.1 TRACE AND DATA REFINEMENT 139

2. new(C) N stmt(A) = {}

3. main(C) = stmt(C) — new(C)

Each statement defined byain(C) has an abstract counterpart, whereas each statement
defined bynew(C) does not. Note thatain(C) # {} because, is observable, i.e., for

every procesp € C.Proc, (p, 7) € main(C).

We follow Gardiner and Morgan [GM93] and relate the variald&C and.A using
a representation progranrep, which may not modify observable variables. Because
the representation program may include angelic and denubdice, rep covers both
forwards and backwards simulation (or simulation and cougation) [GM93]. The sets
of labels ofC and A (i.e., A.PC™ andC.PC") may be different, and hence we allow
rep to explicitly modify pg,. However, in order to preserve the structure of the abstract
program, we require that each concrete main statement haveaime initial label as
its abstract counterpart, thusp must leavepc, = i invariant for all(p,i) € main(C).

Recall that a statemeftis strict iff wp.Sfalse= false

Definition 6.21. For an abstract programd and concrete prograr@, a representation
program rep is a strict terminating statement that takes a state of Bypg,r as input
and returns a state of type 4 var @s output. Furthermore, for eadlp,i) € main(C),
[pG =i = wp.rep.(pg, = i) ], and for each»c A.Ov, (¥, [X = v = wp.rep.(x = V) ]),

i.e.,rep does not modify observable variables,

Becaus€p, 7) € main(C) for every proces$, rep leavespc, = 7 invariant. Thus, if
process is terminated in the concrete state, it must be terminatéadrrorresponding

abstract state.

For a programA, we usestut(A) C stmt(.A) to identify the statements that do not
modify observable variables of and define.Stut(.A) to be the statements that modify
observable variables. It is clear thatt(A) U nStut(A) = stmt(A). For a concrete
programC, we definem_stut(C) = stut(C) — new(C) to be the main statements ¢h

that stutter. We require:

1. nStut(C) C nStut(A)
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2. m_stut(C) C stut(A).

In order to distinguish the statements.infrom those ofC, for eachp € A.Proc, we

define the family of functions
ap:PC, — LS

which returns the atomic labelled statement at lalo¢lprocess. (Similarly, we define

¢, for p € C.Proc.)

Our definition of data refinement is based on that of Back amdWaght [BvW99].
However, using our restriction omep, i.e., that the program counters of the concrete
main statements match the corresponding abstract stat®menrequire that each con-
crete main statement be a refinement of the correspondirigaabstatement. We also
require each new statement in the concrete program to refinreack and von Wright
only require that the non-deterministic choice over allaete main statements refines
the non-deterministic choice over all abstract statemeartd similarly, that the non-

deterministic choice over all new statements refides

Definition 6.22 (Data refinement)Supposed andC are programs; andep is a repre-

sentation program, thesd C, C holds iff each of the following holds:

1. Initialisation: A.Init C C.Init; rep
2. Main statements(¥ piy.main(c) 1€P; ap.i T Cp.i; rep)
3. New statements¥ py.new(c) '€P C Cp.i; rep)

4. Exit condition:

t.(rep; [(Viy topi))) = (rep; [(V ~0p-p0)] C L(V; —Gp-pi)]; rep)

5. Internal convergence:

t(reps (V4 to.pr)]) A t(rep; do [ i @i OT) =

t.(do | Cp.i 0d)

(p,i):stut(C)

Thus,C data refines4 (with respect taep) iff the initial statement of4 is refined by

the initial statement of followed byrep; each atomic statement defined ty.in(C)
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refines the corresponding statementrwith respect taep; each new statement ¢Gf
refinesid with respect taep; if A does not abort, then the concrete program must be
terminated when the abstract program is; and ifloes not abort and stutter infinitely
often, then the concrete program may not stutter infinitétlgro If rep = skip, we write

ACC,andif AL, CandC Cp A, we write A Oig,, C.

6.1.4 Relating trace and data refinement

We now show that ifA £, C holds, therC trace refinesd. Our proof uses the result
of Back and von Wright, which proves trace refinement of acsigstems [BvW94]. An

action systemy is defined as follows:

o = Ag; do Ans| As od

Action A, initialises the action system, a(s andAs are the non-deterministic choices

over all non-stuttering and stuttering actions, respebtiv

A program in our model may easily be transformed into an actigstem. We first
show how statements may be transformed into actions. Baisheither an atomic la-
belled statement or a guard evaluation. Furthermot&S) j: is a special case of guard
evaluation: (] ,(B, — US,)) ku:, whereu has only one valueg, = trueandUS, = US.

We define,
t0AS: (|, (By — US) ki) = 1P = i A By — US;; py = k).
Note that action system rules allow one to rewrite a singéaoin
PG =iAB—IF; pG =]

as the non-deterministic choi¢g(pg, =i A B A By — US;; pg, :=j). For a program

A we lettoAS A) be the action system corresponding4avhere
toASA) = Alnit; do ([ p;.s0uea) TOASP)) [((p)):stuta) 1OASPI)) 0d .
That is if o7 = toAS A), then

Ay = Alnit (6.23)
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Ans = H(p,i):nStut(A) toASa,.i) (6.24)
As = [piystur(a) OAS @) (6.25)
We defineA = A,sM As. Forn € N, notationA" denotes the-fold iteration of action

A, andA* = M,y A". Back and von Wright present the following theorem for trace

refinement of action systems.

Theorem 6.26(Trace refinement [BvVW94])Action systerf® trace refines action system
e, Cy € if

Ao As £ Cy; Cg;rep (6.27)

rep; Anss A C Cpg C; rep (6.28)
wp.rep.(tAANgA) = gC (6.29)
wp.rep.(t.AA t.(doAsod)) = t.(doCsod) (6.30)

The following lemma states that if each concrete non-giantjestatement refines the
corresponding abstract statement, then there is a refitesaenthe non-deterministic
choice over all non-stuttering statements (similarlyiteting statements). We note that
pi O toASp;) for any atomic statemeipt because their weakest preconditions are iden-

tical.

Lemma 6.31.1f A andC are programs;</ = toAS.A) and % = toASC) are their
respective action system representationSiut(C) C nStut(A); andrep is a repre-

sentation program betweé&hand A, such that,

(Vp,):nstut(c) T€P; ap.d E Cp.d; rep) (6.32)
thenrep; A C Cys rep.

Proof.
rep; Ans
O {(6.24)

rep; (l_l(p,i):nStut(.A) tOASapI))
C  {Lemma 6.15 (reduce non-determinismytut(C) C nStut(.A)}
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{Lemma 6.15 (distributivity)

Mipiymstut(c) (r€P; t0AS@p.i))

C  {(6.32),p O toASp))}
Mp,iymstutc) (TOASCp.); rep)

O  {Lemma 6.15 (distributivity)
(Mp.ynstut(c) tOACp.1)); TEP

O {(6.24), definition ofs"}
Chs; rep

Lemma 6.33.If .4 andC are programs;«/ = toAS.A) and % = toASC) are their
respective action system representations;stut(C) C stut(A), new(C) N stmt(A) =
{}, andstut(C) = m_stut(C) Unew(C); andrep is a representation program between

C and A, such that,

(\V/(p,i):m_stut(C) rep; a~p| C Cp-i; rep) (634)
(V(pii)mew(c) €P C Cp.i; rep) (6.35)

then each of the following holds:

1. rep; (Asm1id) C Cg; rep
2. rep; A; C CZ; rep.

Proof (1).
rep; (Asrid)
O {(6.25)
rep; ((Mep,iy:stur(4) LOASEp.1)) Mid)
C  {Lemma 6.15 (reduce non-determinism),
assumptions om_stut(C) andnew(C)}
{idnid O id}
rep; ((Mp,y:m_stut(c) t0OAI8p.1)) T (M(p,iy:new(c)id))
C  {Lemma 6.15 (distributivity)
(Mpiy:m_stut(c) (reP; 10AS@p.1))) M (Mipji)new(c)EP)
C  {(6.34) and (6.35)
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(Mpiiyim_stut(c)y (tOASCp.1); 1€P)) M (M(p,i):new(c) (tOASCp.i); rep))
O  {Lemma 6.15 (distributivity)

((l_l(p,i):m_stut(C) tOASCpl)) [ (I_l(p,i):new(C)tOASCp-i))); rep
O  {stut(C) = m_stut(C) Unew(C)}

(M(piy:stut(c) OASCy.i)); rep
O {(6.25)

Cs; rep

Proof (2). We note thalA* O M,n(AMid)", which gives us the following calculation:

rep; Aq
O  {note abové
rep; (Mnn(AsTid)")
C  {Lemma 6.15 (distributivity)
Mhv(rep; (Asr1id)")
C  {proof below}
M (CS; rep)
O  {Lemma 6.15 (distributivity) and definitign
Ci; rep

We now show thatep; (AsMid)" C CJ; rep by induction onn. The base case is
trivial becaus€AsMid)? = id = C.. Hence we haveep; (AsMid)? O rep O C2; rep.

Foru € N, assumingep; (AsMid)" C CY; rep, we have

rep; (Asrid)“*?
O  {definition}
rep; (Asrid)"; (Asrid)
C  {assumptioh
Cs; rep; (Asid)
C  {proof of part 1
Cy; Cs; rep
O  {definition}

Cy; rep
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We show that if programsl andC satisfy Definition 6.22, i.e.A T, C, then the
conditions given in Theorem 6.26 hold for the equivalentoercsystems, which shows
that.A C+, C holds.

Theorem 6.36.Supposed andC are programs; andep a representation program such
that A C, C holds, thend Cy, C holds.

Proof. We let.# = toAS.A) and¥ = toASC) be the action system representations of
A andC, respectively.

Proof (6.27):

Ao; AS

C  {definitions ofe/, €'} {A Crep C, initialisation}
Co; rep; Aq

C  {Lemma6.33 partP
Co; Cs; rep

Proof (6.28):

rep; Ans; AS

C {Lemma6.3}
Crs; rep; AS

C {Lemma6.33 partP
Cns; C;; rep

Proof (6.29):

t.(rep; [(Vo top)]) = (rep; [(Vo—Gp-p)] E [(Vg—Gp.pi)]; rep)
= {definitions ofC and.</ }

t.(rep; |[t.A]) = (Ve.ps Wp.(rep; |—9.A]).P = wp.(|—g.C|; rep).P)
=  {definition of <7 } {wp definition}

wp.rep.(t.A) = (Vp.px wprep.(—g.A = P) = (=g.C = wp.rep.P))
=  {wpis monotonig{logic}
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wp.rep.(t.A) = (Vp.px Wp.rep.(g.A) = (9.C v wp.rep.P))
=  {logic}

wp.rep.(t.A) = ((wp.rep.(g.A) = 9.C) V (Vp.px Wp.rep.P))
=  {second disjunct of consequenfase}{rep is strict}

wp.rep.(t.A) A wp.rep.(g.A) = g.C
=  {wpis monotonig

wp.rep.(t.AA g.A) = g.C
Proof (6.30):

t.(rep; [(V4 to.pi)]) A t.(rep; do As od) = t.(do Cs od)
= {logic}{definition of.c }{definition oft}
wp.rep.(t.A) A wp.rep.(t.(do As od)) = t.(do Cs od)
=  {wpis monotonig

wp.rep.(t.A A t.(do As od)) = t.(do Cs od) O

Because trace refinement preserves temporal propertiesui(d (Lemma 6.9) and
data refinement implies trace refinement, it follows thaadatinement preserves tem-

poral properties withoupd.

6.2 Enforced properties

We have seen how a queried assertion may be used to verifyety sabperty (Sec-
tion 4.2.3). In the derivation method of Feijen and van Gast¢FvG99], a queried in-
variant is an important mechanism that motivates the nextification to the program.
Thatis, a program’s code is modified so that the queried iants become valid. Dongol
and Mooij [DMO06, DMO08] use both queried invariants and gedrieads-to properties to
allow both safety and progress to be taken into consideraB@cause both safety and
progress properties may be expressed using LTL, we may gleseeour techniques by

using queriegroperties which may be any LTL formulae.

To distinguish our treatment from Feijen and van Gasterehzongol and Mooij,

we refer to properties with a’* as anenforcedproperty. An enforced property is a



6.2 ENFORCED PROPERTIES 147

property that the program code on its own does not necegsatisfy. Instead, we
ensure that the enforced property holds by definition,ae enforced property restricts
the traces of the program so that any trace that does nofysifgsenforced property is

discarded.

Definition 6.37 (Enforced property) Suppose G is a LTL formula. A progratiwith
enforced propertys, denotedA ? G, is a program with the traces od ? G defined by
{se Tr.A|st G}.

Note that an enforced property is used as a specificatiortroahsather than a property
of the implementation, i.e., is used to denote what is reguof the implementation
as opposed to a property that already holds. However, inranogl ? G, because any
traces that do not satisfg are discarded, we may useto prove other properties of
A?G. Also, one may always strengthen a program’s annotatiomtygpducing new

enforced properties or strengthening existing properassighlighted by the following

lemmas.

Lemma 6.38(Property introduction)Supposed is a program and G is an LTL formula,

then, A Cy, A ?G holds.

Lemma 6.39 (Property strengthening}or a program.A and LTL formulae G, H, if
[H= G]thenA?G Cq, A7H.

If a program satisfies an enforced property, then therfay be removed, thereby

turning the enforced property into a program property.

Lemma 6.40. For program.A and LTL formula G, iflr.A = G, thenTr.(A7?G) = Tr. A,
and hence4 ? G O+, A.

Introducing an enforced property to a program can make argnogparder to imple-
ment. For example, consider the following example whei® observable. The set of

traces is empty due to the restriction induced by the enfbreecondition.
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Init: X,y := 0,0
Proces Processy
0: by := false; 0:x:=1
1: (if by — skipfi); | 7: {x=1}
2:y:=X
T {?y=1}

7pcx =1~ pcx # 1

We note that applications of Lemmas 6.38 and 6.39 may alssnpiatly reduce the
set of possible set of traces of a program to the empty sets,Tdwr strategy during

derivations is to perform the weakest possible strengtigeni

6.2.1 Enforced invariants

An important form of an enforced property is@anforced invariantwhich is a formula of

the formOP, for a predicaté®. If we add an enforced invariant, sRyto a program, say

A, each atomic statement of blocks unless execution of the statement re-establishes
P. That is, enforcingdP in A is equivalent to replacing the initialisatioA.Init by
(A.nit; |P|) and each atomic statemeati in A by (a,.i; |P|), where given that

ap.i = i: (US) j:, we write(ay,.i; |P]) as shorthand far (US; [(pc :=j).P])j:.

We note that we may not move the blocking to the start of thenetstatement.
To see this, consider the case wheris a variable of typeB, a,.i = i: (x :€ B)j:, and

P = (pc =j = X). We have

(ap-i; [P])
i (x:€ B; (pG :=1j).P)j:
Oi:(x:€ B; [x])]:

10

I

I: X := truej:

Thus, statemen(fa,.i; |x|) has a trace that extends past j becausex can be assigned
true. On the other hand, statement|wp.(x :€ B).x]; x :€ B)j:, is equivalent to

i: (|false|; x:€ B)j:, whose trace ends at
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To better understand the concept of an enforced invariampnesent a lemma that
describes a program without enforced invariants that isvatgnt to one with an en-
forced invariant. We define the following assumption, whishused in a number of

different lemmas.

Assumption 6.41.Suppose is a program with no enforced invariants?;' t,.pi) holds

(i.e., no atomic statement iA diverges); and R= P X 4 var IS @ predicate.

We ignore divergence in this chapter due to the nature of thgrams we are devel-
oping, i.e., we assume that each atomic statement terrsinatéhe start of a derivation,
it is easy enough to check absence of divergence, and fartrer divergence cannot be

introduced at any point during a derivation.

Lemma 6.42(Enforced invariant) Given Assumption 6.41,df is a program such that
C.Init = (A.Init; |P|) andC is obtained fromA by replacing each gi by (a,.i; |P])
(i.e., 6.i O (ap.i; [P])), thenA? 0P O C.

Proof. We note thattmt(C) = stmt(.A). Also, by Lemma 6.15 (guard strengthening),
for each(p,i) € stmt(C), ap.i T ap.i; [PJ, and hencey.(ap.i) = ty.(ap.i; [P]). That
is, C does not diverge. We now show that show thdd .4 ? OP by appealing directly
to Definition 6.8.

seTr.C

=  {definition of tracé
S € initial (C) VAN (vu:dom(sﬁ Su—1 —¢ SJ)
{definition ofinitial (C) }{definition of —}{C does not diverge

(Foux (CInit, o) =7 (skip, ) A

Is

(vu:dom(s)+(El(p,i):stmt(C) (Cp-i7 SJfl) —p (ld, S,I)))
=  {definitions ofC.Init andc,.i} {.A.Proc = C.Proc}{stmt(A) = stmt(C)}

us

(Foess ((Aulnit; |P]), o) == (skip, s)) A
(Yidom(s)+ (F(p,i):stmea) (@15 [P, Su-1) I—s>p (id,sy)))

=  {logic}
(Foes (AInit, o) 557 (skip, o) A ([P, s0) == (skip, s)) A
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Is

(Vudom(sr+ (Fpaystmeca) (Bpd, Sum1) —p (id, s) A ([P], 8) —> (skip,s,)))
= {logic}
(Fpes (Alnit, o) 57 (skip, 5)) A P.sy A
(Yudom(e (Fpiystme() (@pd, Su1) ——p (id, ) A P.sy)
=  {definition ofinitial (A) }{logic}
S € initial (A) A
(Vudome+ (Fpiystmed) (@pd, Su1) —p (id,50))) A (Fudom(s P-Si)
{definition of— 4 and tracé{definition of O}
seTr. AN (sk0OP)
{definition of A7 OP}

seTr.(A?0OP) O

We may equivalently replace each atomic statemeupt TP so thatP appears as a

guard before and after each atomic statement.

Lemma 6.43(Enforced invariant (2)) Given Assumption 6.41, @f.Init = A.Init; |P]
and C is obtained fromA by replacing g.i by (|P]; a.i; [P]) for each(p,i) €
stmt(A), thenA? 0P O C.

Proof. The proof is virtually identical to that of Lemma 6.42 (erded invariant). o

We may also formaliséLC .P, 7GC .P and? st,.P to denote assertions in the program
that are enforced locally correct, globally correct, aradbkd respectively (see Chapter 4).
Note that the definitions below are not special cases of Digim6.37 becauseC, .P,
GC, .P andst,.P are properties of a single process, i.e., cannot be expressa LTL

formula on the program. Furthermof®,C .P A 7GC .P = 7 P.

Definition 6.44 (’LC, ?GC). Let A be a program; pe A.Proc; i € PC,; and P be
a predicate. A program with assertiathC .P at control point pis a program whose
traces are defined bfs € Tr.A | s+ LC, .P}.

Similarly, a program with assertionGC .P in process p is a program whose traces are
defined by{s € Tr.A | s- GC,.P}.
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Definition 6.45(7 st,). Supposed is a program; P is a predicate; and @ A.Proc is a
process.A 7 st,.P is a program whose traces are defined{lsy= Tr.A | s+ st,.P}.

Recalling that assertioR at control pointp; is equivalent tad(pg, = i = P), a
program with arenforced assertiod P at control pointp; is also equivalent to enforced
invariant? O(pg, = i = P). Although it is tempting to think of ? P} p; as being
equivalent to{|P|; pi), it is important to realise that this is not the case. WKil®} p;
ensures thaP holds for any state that satisfips, = i, ([P|; pi) only ensures that
pi is executed in a state in whidh holds, i.e., it is possible to obtain a state in which
PG, = i A =P holds. In order to obtain an equivalent formulation{@#} p;, one must
replace each statemegptin the program with(q;; |pc, =i = PJ), whereg; may be the
same ag;. Thus, a statement in procgshat establishegg, = i must also establish,

and each statement in procesg p must preserve if pg, = i holds.

The next lemma formalises the discussion on establishioa torrectness by Feijen
and van Gasteren [FvG99, pg 58], where one may introduce famced assertion to

establish the local correctness of another assertion.

Lemma 6.46(Establish local correctnesspupposeA is a program, pe A.Proc, i €
PC,, and statement;p=i: (] ,(By — US,) ku: {7 P}). If we obtain progrant from A by
replacing pin A by i: {?wp,.pi.P} ([ ,(Bu — US)) ky: {TGCP}), thenA C C.

Proof. By Lemma 4.25, local correctness Bfat eachk, holds ifpc, = i = wp,.p;.P

holds, which is exactly the enforced assertrgm.p;.P atp; in the new program. =

6.2.2 Data refinement

We now describe a theorem that allows one to perform dateeragnt in the presence

of enforced invariants.

Theorem 6.47(Data refinement with enforced invariant§iven Assumption 6.41, if
rep is a representation program, and @ P X¢.va is a predicate, themd 7 OP T
C 7 0Q holds provided

A.lnit; [P| C C.nit; |Q]; rep (6.48)
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(Ypiy:main(c) 1€P; |PJ; ap.i; [P [QJ; cpi; [Q]; rep) (6.49)
(V(piymew(c) TEP [QJ; ¢ [Q]; rep) (6.50)
rep; |-PV (vg‘ Wpo.p.oP)| T [-QV (V5 wpp.pi.—Q); rep  (6.51)

7

1

t.(rep; do [ ;). srur(a) [Pl @pds [P] od) = t.(do [ i e Qi G [Q] 0d)
(6.52)

Proof. Using Lemma 6.43 (enforced invariant (2)), we constedGtthe program equiv-
alent to.A ? OP by removing enforced invariaf; the replacingA.Init by A.Init; |P|
and each atomic statememti by (|P|; a,.i; |P]). In a similar manner, we construct
C' equivalent taC 7 UQ, then we show thatl’ T, C’ using Definition 6.22, which due

to the transitivity ofZ gives us our result. For eaghe A’.Proc, we define
a,:PCp — LS

to be the function that returns the atomic labelled stateérattabeli of processp in
programA’ and definec’ similarly. We now show that each of the conditions of Defini-

tion 6.22 (data refinement) are satisfied.

Initialisation:

A Init

O  {definition of A’}
A.lnit; |P]

C {(6.48)
C.Init; |[Q]; rep

O  {definition ofC’}
C'.Init; rep

Main statements
rep; a.i

O  {definition of A’}
rep; |PJ; ap.i; [P
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C  {(6.49)
[QJ; coi; [Ql; rep
O  {definition ofC’}

/.
Cp-l; rep
New statements

rep
C  {(6.50)}

1QJ; cod; [QJ; rep
O  {definition ofC'}

/ 5.
Cy-i; rep

Because we have assumed that every statemehtlioes not diverge, we strengthen the

conditions for “exit condition” and “internal divergencsbd that the consequents of the

conditions are satisfied.

Exit condition The required condition is exactly (6.51). To see this coeshgy.(aj,.i)

for (p,i) € stmt(A').

_‘gp-(a{)-i)
=  {definition ofa,.i}
—0p-(LPJ; ap.i; [P])
{definition ofgp }

wp,.([P]; ap.i; |P]).false

{definition ofwp}

P = wpy.(a,.1).(P = false)

= {logic}
=PV wp,.(8p.1).(—P)

Internal convergenceCondition (6.52) implies the required condition in Defioit 6.22

(data refinement).
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In our derivations, we often replace a single statement irogram by another (for
example replacé skipj: in a proces with i: [B|j:). The lemma below allows one
to perform such a replacement. Because the guard of thecegplstatement could
potentially be strengthened, the replacement could patBnhamper progress at;,

l.e., pg = | ~ pg # | may no longer be valid. Regardless of whether or not
PG =i ~~ PG, # i is a property of the original program, we introdymg = i ~» PG, # |
as an enforced property in the modified (concrete) prograarder to ensure progress

is not hampered.

Lemma 6.53(Statement replacementfiven that Assumption 6.41 holds dfis ob-
tained fromA by replacing g.i by G,.i for some(p, i) € stmt(A) such that g.i; [P| C
Cp.i; |PJ holds, thend?0OP C C?(0OP A (pG =i ~ pG, # 1)).

Proof. BecausgVYy' gq.0; = tq.G;) and

(Y(qj):stme©)—{(pi)} B B Cqf) A (8p.i; [P] E cpii; [P])

hold, (vgj 0q-0 = t4.¢), i.e.,C does not diverge. Furthermore, for &l,j) € stmt(C)
ando,p € %, (Cqj,0) —=4 (id, p) = (agj,0) —>q (id, p). Let A’ = A?0P and
C'=C?0OPA (pg =i ~ pg, # i)). We use Lemma 6.10 (trace inclusion) and show
that Tr.(C") C Tr(.A’). Take some arbitraryr € Tr.C’. We perform case analysis as

follows.

Casetr - O(pc, # i). For eachq,j) € stmt(C) — {(p,i)}, aq.j O ¢q.j, and hence each

transitiontr,_; — 4 try follows from (a4.j, try_;) iq (id,try). Thereforetr € Tr. A’

and the proof follows.

Casetr - &(pg, = i). Letu € dom(tr) such that(pg, = i).tr,. Becauselr.C' =
0O (pe, # i) holds, for somer > u, (pe, = i).try_1 A (PG # i).try, i.e., there exists

a transition corresponding to the executiorcgf, namely(c,.i, try_;) ip (id, try) A

us

([P],try) — (skip,tr,). Becausen,.i; |P| C c,.i; |P|, tr € Tr.A" and the proof

follows. O

We note that in some cases introducing = i ~ pc, # i in the concrete program may be too
strong. For example, in a lock-free or obstruction-freegpam, it is sufficient for the program as a whole
to make progress, i.e., individual processes need not nrakegss. However, because we do not consider

derivations of such programs in this thesis, we consideartiras for their derivation to be future work.
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It is tempting to decouple the refinements in order to proeedverall result, i.e.,
useapi & C.i = AL CandA C C = A?0P C C?0P. However, although
ALC A?0PandC C C70OP hold, the refinemenid ? OP C C is not always valid

becausey.i; |P| C c,.i may not hold.

One may also use Lemma 6.53 (statement replacement) tggtesrnthe guard of an
existing statement, although strengthening the guardnegjoew progress properties to
be enforced. If the guard is not strengthened, we may useotlosving lemma which
does not require any new progress properties to be intradl<gr example, the lemma

may be used to refine statements with a frame xs@y an assignment ta

Lemma 6.54(Statement replacement (2)piven that Assumption 6.41 holds¢ifs ob-
tained fromA by replacing g.i by G,.i for some(p, i) € stmt(A) such that g.i; |[P| C
Cp.i; |P] and[gp.(ap.i; |P]) = gp.(Cp.i; |P])] hold, thend? 0P C C?OP.

Lemma 6.55(Initialisation replacement)If C is obtained fromA by replacing.A.Init
by C.Init such that4.Init; |P| C C.Init; |P| and[g.(A.Init; [P]) = g,.(C.Init; |P])]
hold, thend 7 OP C C ? OP.

6.3 Frame refinement

In order to decouple introduction of new variables fromesta¢nts that modify the vari-
ables, we usprogram frame$Mor94]. We may write: X-[(S)] j: for X-[i: (S) j: ], which
helps clarify the purpose of the frame in sequential contjwrsi When necessary, we
also writelFB = i:if (B — x-[skip]) fi j: fori:x-[|B]]j: to clarify thatIFB blocks on
B beforex is updated by the frame, i.e.,#B holds,IFB does not modify.

Introducing a fresh variable to the frame of a program ctuists a single refinement
step. Further refinements may be performed by restrictiegothssible values of the
variables in the frame. For a labelled statenie() j: and variablex of type T, we use
i:X-[(S)]]: to denote the statemeintS) j: with a framex. Executing: x-[(S)]j: consists
of executingi: (S) j: atomically followed by a modification of to any value withinT.
The aim of such a statement is to later refine [(S)] j: by restricting the assignment to

X, which effectively reduces non-determinism in the program
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It is clear that a freshly introduced frame variable is nodevable. Hence the ab-
stract and concrete state spaces may have different setsiables. We define state-
mentsadd x andrem x, that add and remowefrom the current state space. Back and
von Wright [BvWO03] present similar statements. The weagestondition ofadd x and

rem x have the following types where we assurg VAR
wp.(add x): PXvarsxp — PEvar
wp.(rem x): PXyar — PEvarifx

where
[wp.(addX).P = (Vx1 P)] providedx is of typeT
[wp.(remx).P = P]| providedx is not free inP

That iswp.(addx) returns a predicate on a state space that does not containl
wp.(rem x) returns a predicate on a state space that contaelthough this predicate is

independent ox.

Lemma 6.56. Suppose x is a variable of type T; P is a predicate; and S is allet

statement. If x is not free in P and S, each of the followingl$rol
1. addx; x-[§]; remx O S
2. X[§]; remx O remx; S
3. |[P]; remxOremx; |P]
4. x:=T; remx O remx

For a programA such thak ¢ A.Var, we definex-[.A] to be a program where

(x-[A]).Var = ANaru {x}
JA]D.Init = A.lnit; addx; x:€ T

(x-[A]).Proc = {x-[p]|p € A.Proc}
(x-[A]).Ov = A.Ov

(X

Recalling thaexec(p) returns labelled statement corresponding to the body afga®

p (see Section 2.4.1), we define

exec(x-[p]) = x-[exec(p)].
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Because-[exec(p)] is a labelled statement, the rest of the frame definition defised
in Chapter 2. The following lemma allows one to introduce & mariable to the frame

of a program.

Lemma 6.57 (Extend frame) Given that Assumption 6.41 holds, if& A.Var is a

variable of type T; x is not free in P; amép = remx, thenA? OP T, X-[A] ? OP.

Proof. We show that the conditions in Theorem 6.47 (data refinemétht enforced

invariants) are satisfied.

Condition (6.48).

Alnit; |P| C (x-[A]).Init; |P]; rep
=  {definitions of(x-[.A]).Init andrep}
A.lnit; |[P| C A.lInit; addx; x:€ T; |P]; remx
= {Lemma 6.56x ¢ A.Var andx nfi P} {Lemma 6.14 (reflexivity)

true

Condition (6.49). Note that predica®eon the left and right hand sides bfhave differ-
ent types.

rep; ap.i; [P] C cp.i; [P]; rep
{definitions ofrep andc,.i}

remx; ap.i; [P] C x-[ap.i]; |[P]; remx

{x does not appear iR andx ¢ .A.Var}
{Lemma 6.56

true

Condition (6.50). This is trivially true becausew(C) = {}.

Condition (6.51). This holds becauag,.(a,.i).(—P) = wp,.(Cy.1).(—P) andx does not
appear irP.

Condition (6.52). This holds becaugeloes not appear in the guard of a@yi where
(p,i) € stmt(A). o
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Lemma 6.58(Frame reduction)Suppose Assumption 6.41 hol@s,i) € stmt(.A) and
C is obtained fromA by replacing @.iby G,.iwhere g.i = i: x-[(S)]j:and ¢.i =i: (S j:.
ThenA C C.

Proof. The proof follows directly from Lemma 6.54 (statement replaent (2)) be-

causea,.i C c,.i and[gp.(8p.1) = Gp.(Cp.i) ] o

6.4 Statementintroduction

Given an existing statementx-[(S)] j:, a useful refinement might be to turn the state-
ment into atomic statements: x-[(S)] k: andk: x-[skip] j:, so thatS and the update
to x can be executed in two atomic steps. One might also introdwustatement with

a framex, i.e., replaca: x-[(S)] : with i:x-[(S); k: (T)]]:, which is equivalent to state-
menti: x-[(S)]; k:x-[(T)]j:. However, even for simple programs, splitting the atoryicit
of a statement causes problems with interference. For éeamgnsider the following

program wherex andb are private variables aralis observable.

Init: b, 0 := false 1

ProcessX Processy

0: x-[b:=true] |0:if b —
T: 1. x:=100;
2: 0:=X

fi

The only observable trace of the progranj{ie — 1}, {o — 100}). However, if we split
Xy into statements: x-[b := true] 1: and1: x-[skip] 7:, we obtain a larger set of traces
becausd: x-[skip] 7: may be interleaved in betweéfi andY,, and hence splitting,

does not result in a refinement.

Next, we present a theorem that allows one to replace statéame[(S)]j: by the

sequential statement(S); k:x :€ Tj: wherek is a fresh label. Recall that we view
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i:X-[(S)]]: as a single atomic statement and that varialofeay be global (but not observ-
able), and hence the theorem essentially facilitatestisilithe atomicity ofi: x-[(S)] j:
into two atomic statements(S) k: andk: x :€ T j:. Unlike the sequential programming
case [Mor94], due to the possibility of interferencekait becomes difficult to split the
atomicity ofi:x-[(S)]]: and decouple modifications tofrom i: (S)j:. Back and von
Wright describe the difficulties in splitting the atomicity the context of concurrency
[Bac89b, BvW99]. Our theorem allows one to split the atotyiof a statement in the
context of programs with enforced invariants. The techaigwclosely related to that of
reduction[Lip75], however our presentation is more formal and molatesl to program
development. We first define the following assumption. We d$&C, to denote the set

of labels of procesp in A. As usualr ¢ A.PC,.

Assumption 6.59.Supposed is a program that does not diverget does not have any
enforced invariants; xc A.Var; P € P X 4va IS predicate; x is a variable of type T;
ap.l = i:X-[(S)]j: where(p,i) € stmt(.A); and x is not free in § Also suppose that
k ¢ APCp; LS = i:x:[(S)]; k:x-[skip]j:; and programC is obtained fromA by
replacing g.i by LS.

We let A“ denote the possibly infinite iteration of stateméntAs with A*, A O
(Amid)“ holds. Furthermore, one may convert a loop into an iteratiggement using
the following equalitydo A od & A*; |—g.A|. The following lemma is by Back and
von Wright [BvW99, pg308].

Lemma 6.60.1f S, T, U are monotonic; S is continuous; T and U are conjwesgtand

S TCU; Sthen ST C U¥; S.

Lemma 6.61. Supposed andC are programs andep is a continuous representation
program such that¥p i).main(c) 1€P; ap.i T Co.i; rep) and(V py.stut(c) rep T Cp.i; rep)
hold. If & = toAS.A) and%¢ = toASC) then t(rep; As od) = t.(Cs Od).

Proof.
t.(rep; do As od) = t.(do C; od)
=  {convert to iteratioh
t.(rep; ASs [9.As]) = t.(CS; [-9.C))
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{[t(S; &) =wpS.(tS)]}

wp.(rep; AS).(t.[—g.As]) = wp.(C).(t.[~9.Cs])
{[t.|P] = true]}

t.(rep; AY) = t.(CY)

= {rep; AY C C¢; rep, see beloy

t.(C¢; rep) = t.(CY)

=  {by definition ofrep, t.rep = true}
t.(CY) = t.(C¢)
= {logic}
true
We now showep; AY C C¢; rep. By Lemma 6.33rep; (Asrid) C Cg; rep holds
by our assumption thatv yiy.mainc) 1€P; .i £ Cp.i; rep) and (V(py.stut(c) 1€P &

Cp.i; rep) hold.

rep; AS
O {AO(AMId)~}
rep; (Asmid)~
C  {Lemma6.60rep; (Asr1id) C Cg; rep}

CJ; rep o

Theorem 6.62(Statement introduction)Suppose assumption 6.59 holds and T is finite.

If each statementeg for (q,l) € stmt(.A) is conjunctive and

rep =if pg, =k — |PJ; ¢,.k; |P][pG # k — skip fi (6.63)
P A Wpy.(Cp.i).(—P) = wpy.(8.1).(—P) (6.64)
(vq:A.Procf{p} (VI:PCCI (6 : 65)

[PJ; cok; [P]; cql; [P] E[PJ; col; [Pl gk [P)))
then A7 0P C, C7OP.
Proof. We prove the result using Theorem 6.47 (data refinement wifibreed invari-

ants).

Condition (6.48).
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A.lnit; |P]

O {Alnit=C.Init}
C.Init; |P|

C  {wp.(C.Init).(pc, # k) }
C.Init; rep; |P]

C  {rep; [P] E [P]; rep}
C.Init; |[PJ; rep

Condition (6.49). We are required to show that each mairestant is refined by its
concrete counterpart. We first show tlagp, is refined byc.p;, then consider the other

main statements in procegsand finally the main statements in procesgesp.

For main statemert,.i we have the following calculation.

rep; |PJ; ap.i; [P C [P]; s [P]; rep
= {Lemma6.16 (quardp,.i O |pG, =i]; ap.i}
{wpy.(Cp.1).(pG = K) } {Lemma 6.15 (guard strengthening)
[PJ; 8i; [P] C [PJ; Gouis [PG = kA PJ: Goki [P
& {Lemma 6.15 (monotonicityfLemma 6.15 (guard strengthening)
8.1 C Cp.d; [PG =K]; Co.k
= {expandc,.i}
Al C [pe =1i]; S; x:€T; pg :=k; |pGg =kK|; x:€T; pG :=]j
= {Lemma 6.17 (absorptioh)
apd C |pG =1i]; S; x:€T; pG =]
{definition ofa,.i } {Lemma 6.14 (reflexivity)

true

For(q,1) € main(C) — {(p,i)}, we havea,.| O c,.l. We split these statements into two

cases.

Casep = g. We knowl # k becausép, k) € new(C) andwp,.(cp.l).(pc, # K).

rep; |PJ; ap.l; |P| C [P]; co.l; |[P]; rep
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= {Lemma6.16 (guard,.| O |pc, = |]; a,.| andl # k}
[PJ; al; [P] E[PJ; Gl [P
= {ap.l O c,.l}{Lemma 6.14 (reflexivity)

true

Casep # g. We have the following calculation:

rep; |PJ; aq.l; [P]
O {aq! O cq.l}{definition ofrep}{Lemma 6.15 (distributivity)
PG =Kk A PJ; co.k; [P]; cq.l; [P] M [p6 #K]; cql; [P
C  {(6.65)}{Lemma 6.15 (commutativity)
[PJ; [pG =k[; cql; [P]; co.ks [P] T [pGy # K] cq.ls [P
C  {pg # k= wpy.(Ccq1).(PG # K) H{pgp = k = wpy.(Cq 1).(PG = K) }
|PJ; cq.l; [pe =K]; [P]; ¢k [P]Mcql; [pG #K|; [P
O {Lemma 6.15 (guard strengthening and commutatiyity)
|PJ|: cq.l; [P]; PG =kAPJ; ok [P|TT[P]; cql; [P]; PG # K|
C  {Lemma 6.15 (distributivity})

[PJ; cql; [PJ; rep
Condition (6.50). There is only one new statemerd imamelyc,.k.

rep C |P]; co.k; [P]; rep

< {kO [pc = k]; co.kH{wpp.(CpK).(pc # K) }
rep C [P A pc =K|; .k |P]

& {Lemma 6.15 (reduce non-determinigm)

true

Condition (6.51). We define

AE = P = (V3 wp,.pi.(—P))
CE=P = (V5 wpp.pi.(—P)).
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P ACE
= {definition of CE}{split the universal quantifiér

P A (V(piy:main(c) WPb-(Cp-1)-(=P)) A (Y (pj)mew(c) Whp-(Cp-1).(=P))
= {logic}{new(C) = {(p,K)}}

P A wpy.(Cp.K).(—P)

We also have:

pc, # kA CE= pcg, # kA AE
=  {definitions of CE andAE}{logic}
PG # kA P A (Y5 WRo.pi-(—P)) = pG, # K A (V5 Wis.pi.(=P))
& {aql Ocqlforall (q,1) € stmt(C) — {(p,i), (p,K)}}
PG # KA P A wp.(C.pi).(—P) A wpy.(C.px).(—P) =
PG, # kA wpy.(a.pi).(—P)

= {usepc, # k}
PG # KA P A wp.(C.pi).(—P) = pg, # k A wp,.(a.pi).(—P)

Thus, we have the following calculation

rep; |AE] C |CEJ; rep
& {definition ofrep}{Lemma 6.15 (distributivity})
(PG = k A PJ; Gok; [PJ; [AE]) 11(|pG # kJ; |AE]) C
([CEJ; |pc =k APJ; cok; [P]) M ([CEJ; [pgy # k)
& {Lemma 6.15 (monotonicity)
{Lemma 6.15 (guard strengthening), second calculationeabod (6.64)
PJ: Goki |AE]| C [CEJ; [PJ; Gk
& {Lemma6.16
[PJ; [wpp.(co K).AE]; Gk E [CE[; [P]; cpk
& ({first calculation above
[PJ; [Wpp.(Co.K).AE| C [P A Wpy.(Cp.K).(—P) ]
& {Lemma 6.15 (monotonicityfLemma 6.15 (guard strengthening)
WPy (Cp.K).(—P) = wp,.(Cp.K).AE
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& {wpis monotoni¢

true

Condition (6.52). We may prove this using Lemma 6.61. We shewis continuous
using the results of Back and von Wright [BW98, pp368-37amely, if S, andS, are
continuous, the|P|; S 1 |—P|; $) and(S;; S;) are continuous. IT is finite, then

X :€ T is continuous.

Application of this theorem directly is expensive due to68, which essentially
shows that the new statememnp, commutes with the main statements in all other pro-
cesses. However, by constructing the program in a specdierothis proof can largely
be avoided, that is new statements can be introduced as atlta smaller cost. Some

techniques for avoiding a full proof of (6.65) are describetbw.

We state the following corollaries that allow one to introdwan assignment state-
ment more directly. An expression is assignment compatifitie a variable if they are

of the same type.

Corollary 6.66 (Assignment introduction)Suppose the assumptions of Theorem 6.62
hold, but where LS= i: (S)) ; k:x := E|: for an expression E that is assignment com-

patible with x, thend 7 OP C, C 7 OP.

Note that we only allow the new statememptk to modify variables that appear in the
frame ofc,.i. This is to disallow modifications that could endanger ags&s in process

p that have already been established, and hence are no lorfgeres.

It is tempting to try and generalise Theorem 6.62 so that adgaastatement is
introduced directly. However, such a statement introdwoesplications with progress
and we have found the proof of a more general theorem doesorkt Wurthermore, the
required commutativity property (6.65) becomes difficalptove in practice. Equation
(6.63) describes the constructionrep, while (6.65) represents a proof obligation that is

potentially difficult to prove. Using Lemma 6.20, we may slifypthe proof as follows.
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Lemma 6.67.Suppose P is a predicate; p and q are processes such tagk € PC,

is a label; p = k: (US) j:; and | € PCyis alabel. If p; g C q; pxand
(=(pG =] A P)) = wpy.01.(=(p% =] A P)) (6.68)
thenp; [P]; a; [P Ea; [P]; pe [PJ holds.

Proof.
P [Pl ai; [P
O {wpy.p«-(PG = j) }{Lemma 6.15 (commutativity)
P (PG =] APJ; a; [P
C  {(6.68)}{Lemma6.20
P G (PG =) APJ; [P
C  {assumptioh{Lemma 6.15 (guard strengthening)
a; P (PG =] AP]
C  {Lemma 6.15 (guard strengtheniggyvp,.px.(PG = j) }
a; [Pl pe [P 0

Lemma 6.69. Suppose P is a predicate; p and g are processes such tagk € PC,

is a label; p = k: (US)j:; and | € PCyis alabel. If p; g C q; pxand

PG =1 AP = wp.pc.(pGg =1 A P) (6.70)
then|P|; ps; [PJ; a C [PJ; q; [PJ; p«holds.

Proof.

[PJ; pe [PJ; a

O {q O [pg=1]; g}{Lemma 6.15 (commutativity)
[PJ; ps [P =1APJ; g

C  {(6.70)}{Lemma 6.20
[PJ; [peg =1 AP p q

C  {assumptionpy; g C q; p« }{Lemma 6.15 (guard strengthening)
[P =1 AP a;

C  {Lemma 6.15 (guard strengtheningd O |pc =1]; g}

LPl; ai; [P]; px o
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Lemmas 6.67 and 6.69 show that the proof of (6.65) is simglifi@; g C q; p«
holds. The following lemma allows one to discharge such pobdigations. Parts 1, 2
and 4 of the lemma suggest that one should keep a variablensiframe for as long as

possible.

Lemma 6.71(Statement commutativityJFor any conjunctive statement S and variable

x of type T, each of the following hold:

1. x:[skip]; x-[§ E x-[]]; x-[skip]
2. x-[skip]; SO S x-[skip], provided x does not occur in S
3. x:=true; |x] C |X]; x:=true

4. x:= E; x-[skip] C x-[skip]; x := E, provided E is assignment compatible with

X

Proof (1).
x-[skip]; x-[§ & x-[]]; x-[skip]
=  {definition of frame
X:e€T; SXx:eTES x:eT; x:eT
& {x:eTLC skip}{Lemma 6.17 (absorptioh)
Sx:eTCS x:eT
& {Lemma 6.14 (reflexivity)

true

Proof (2).
wp.(x-[skip]; S).R
= {wpand frame definitions

wp.(x:€ T).(Wp.SR)

=  {wpdefinition}
(V1 WP.SR)
= {logic}
Aur (x:=V).(Wp.SR)
= {xdoes not occur 15}
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Ayt WPS((x:=V).R)
{wp.Sis conjunctive

WpS(A,r (X = V) R)
=  {logic}{wpand frame definitions

wp.(S x-[skip]).R)

Proof (3,4). These follow via trivialwp calculations. o

Lemma 6.72. For a predicate P and statements S and T,=P (S C T) holds iff
|P|; SC [P]; T holds.

Proof.
|IPl; SCP; T
{definition of C}
(Vk (P=wp.SR) = (P = wp.T.R))
= (VR P= (Wp.SR= wp.T.R))
=P = (VRrWp.SR= wp.T.R)
=P= (SCT) .

6.5 Conclusion and related work

The techniques of Feijen and van Gasteren [FvG99] and DoaigwlMooij [DMO6,

DMO08] do not describe a relationship between the initial &ndl programs. Correct-
ness of the final program is judged on the basis that it saisfie same safety and
progress properties as the initial specification. The motibobservable behaviour is
not addressed and therefore no formal rules that preverftememodifying observable
variables. Hence one cannot claim that a derived programereement of the original

specification.

Abadi and Lamport describe the concept of refinement magpwich relate the
abstract and concrete state spaces [AL91]. Gardiner andaiadescribe refinement
rules for sequential programs [GM93] and Back and von Wrggt# refinement rules

for action systems (which may be used to model sequentiatandurrent programs)
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[Bac93, BvW94, BvW99]. Furthermore, the rules are such #rgt observable be-

haviour of the final program is an observable behaviour obtiginal.

We have formalised queried properties as enforced pregedind presented formal
rules for the derivation of programs that ensure refinem¥eti.our techniques facilitate
the aphorism of Feijen and van Gasteren [FvG99], where ar@nog code is finalised
only when all required properties are satisfied. Enforcep@rties and frame statements
provide a nice interplay where the frame variable allows@eawrange of (unobservable)
behaviours, while the enforced properties restrict thabielurs so that the traces satisfy

the required properties.

In techniques such as the B method and action systems, urtiod of new vari-
ables are tightly coupled with the operations and invasidhat refer to the variable,
and hence all operations and invariants that use a new \amaibst be introduced at
the same time. As a result, each refinement step can beconm@esoand thus diffi-
cult to prove [ACMO5]. Lamport presents the TLA frameworkialinis used to specify
systems [LamO02]. Rules for the refinement of specificatiosagpeovided, together with
techniqgues for integration with the TLC model checker. Bsdfety and liveness prop-
erties are considered. However, refinement of livenesseptieg is generally ignored.
Furthermore, because both programs and program propardescpressed by a logical

formula, expressions tend to get long and complicated.

Application of Theorem 6.47 is potentially difficult becawsp can become compli-
cated, much like action systems, Event-B, and TLA. Appiaabf Theorem 6.62 can
potentially generate a large number of proof obligatiormydwver, this is also true in
methods such as action systems [Bac89b] where statememntstie different processes
are combined to form a single non-deterministic loop. Ouivdéons avoid Theorems
6.47 and 6.62 so tha¢p need not be defined explicitly, and the required commutstivi
proof, i.e., condition (6.65) in 6.62, is trivialised. Tagkend, we aim to use Lemmas

6.67, 6.69 and 6.71 as much as possible.

Simplification of the refinement steps is mainly achieved Xpgl@ting both frames
and enforced properties, which may be manipulated indepehdof each other. That

is, we achieve a decoupling between variables and opesatian modify the variables,
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allowing refinement via a series of small steps. In Chaptee present example uses of

the theory developed in this chapter.

Although we have presented enforced properties and proffeanes in the context
of the programming model in Chapter 2, the concepts of eatbproperties and pro-
gram frames can be extended to other existing frameworksasithe B-method, action
systems, TLA, etc. We leave exploration of how enforced prog@s and program frames

may be incorporated into these methods as a topic for futwestigation.
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Example Derivations

One way to reveal the crux of an algorithm is to formally deritfrom its specification.
In this way, the key underlying mechanisms of the algoritmenexposed, because each
change in the program under construction is carefully nabdiet by the properties that

still need to be established.

In this chapter, we use the techniques from Chapters 4 andiérice a number of
standard concurrent programs. The chapter is structuréalews. In Section 7.1, we
derive the initialisation protocol. Then we tackle the gesb of mutual exclusion. In
Section 7.2 we present the safe sluice algorithm, whichigesthe common start to the
derivations of Peterson’s algorithm (Section 7.3) and Rekkalgorithm (Section 7.4).
We assume weak fairness for the mutual exclusion algoritsuhenly minimal progress

for the initialisation protocol.
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Contributions. This chapter is based on work done in collaboration with AN&ooij
[DMO06, DMO08], however, the derivations incorporate newesttiniques that have since
been developed. The initialisation protocol and Petessalgorithm are from [DMO06],
but the progress-based modifications are motivated by nkemenas such as Lemma
4.65 (deadlock preventing progress) and Lemma 4.78 (basgggss) from [DMO08]. Al-
though the progress-based motivations in [DM06, DMO08] arenfal, the modifications
themselves are informal and a relationship between thalisfiecification and final pro-
gram is missing. In fact, it is possible to derive an incorgrogram, then claim that the
derived program implements the original specification dheancorrect program is cor-
rected. The derivations in this chapter not only motivatetgaand progress in a formal
manner, but also use the theory from Chapter 6 to justify gaogram modification.

This ensures that the final program is an implementationeirtitial specification.

7.1 Initialisation protocol

As a first example, we consider the initialisation protoam fwo processes [Mis91].
The protocol ensures that both processes have executednikialisation code before

the rest of the program is executed.

7.1.1 Specification

The specification of the protocol is formalised by the progia Fig. 7.1. Statement
X.init denotes the contribution of procexsto the initialisation of the system. We use
the following sets which enable us to refer to the controhpowithin X.init and Y.init

more easily:
IPCx = labelq0: X.init)
IPCy = labelq0: Y.init).
We are heading for a symmetric solution, and hence focusisauskions on proce3s

only. We assume tha¢.init terminates and does not block, i.e.,

IAx = pcx € IPCx ~ pox € IPCx.
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We follow the convention of placing additional program regments below the program
code. Because we develop symmetric proce¥sasdY, we only show the safety and
liveness properties foX. In order to distinguish properties of the program from thos
with a symmetric equivalent, we uBg to indicate thaP is a property of process. That

is, every propertyPx has a symmetric equivaleRt. A property without a subscriptis a

property of the whole program.

Init: pcx = 0 A poy = 0

ProcesxX Process/

0: X.init; 0: Y.init;

1: skip 1: skip

T:{?poy € IPCy} |7: {?pcx & IPCx}

1Ax: pcx € IPCy ~ PCx ¢ IPCx
Livex: (Vi.pcy, POx =1 ~» pox # i)

FIGURE 7.1: Initialisation protocol specification

The safety property for procedsis that proces¥ is not executingy.init when X
has reached, i.e., if pcx = 7 holds, therpcy ¢ IPCy must hold. Due to the possible
interleavings of statements with¥init and.init, the code as given does not guarantee
this property. Hence wenforcethis property by placing the queried assertjmy ¢
IPCy at X,. The enforced assertion only allows executions in wigch¢ IPCy holds
when procesX reaches . That is, when ignoring the enforced assertion, although th
program in Fig. 7.1 may have traces such figt= 7 andpcy € IPCy hold, such traces
are discarded by the enforced assertion. The progresseeatgnt is that each process

satisfies individual progress, which is formalised by thediratelivey.

Note that without theskip statements aX; andY;, due to the enforced assertions,
the set of traces of the program would be empty. We discussiplecations of deriving

a program without thekip in Section 7.1.3.
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7.1.2 Derivation

Our derivation method starts from an enforced property dtetgts to add code to
ensure the program establishes the property. As part opasgmay need to introduce
new enforced properties that guarantee that the new codlestalblish the properties.
The aim being that the new properties should be “easier” tabéish than the existing

properties, and eventually we remove all enforced properti

Correctness ofpcy ¢ IPCy at X,. Becausepcy cannot be accessed or modified by
processX, the only way in which local correctness may be establisbdy iintroducing
new variables to the program. Using Lemma 6.57 (extend frame introduce fresh
private variable$y andby of type Boolean, along with enforced invariants describing

their purpose. The invariant fdx, is

D(pCX =T7AN bY = PCy € IPCY) (71)

The enforced assertigrey ¢ IPCy at X, is equivalent to the enforced invarigntpcy =

T = poy € IPCy), and hence this holds if (7.1) angipcx = 7 = by) both hold. An
additional constraint on the initialisation protocol (agymally specified in [Mis91]) is
that the program may not modify newly introduced variallgandby beforeX.init and
Y.init, and hence we use Lemma 6.58 (frame reduction) to rerbgwandby from the

frame oflnit, X.init andY.init. The refined program follows.

Init: pcx, poy := 0,0

ProcessX ProcessY
0: X.init ; 0: Y.init ;
1: by, by -[skip] | 1: bx, by -[skip]
7: {? by} 7: {7 bx}

?2(7.1)x: O(pex = 7 A by = poy € IPCy)
IAx: pcx € IPCx ~ pcx € IPCx

Livex: (Vi.pcy, POx =i ~ pCx # i)
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Local correctness ofby at X.. This may be established via assignmbpt:= true
beforeX., however, such an assignment will make it difficult to es&btorrectness of
(7.1)y. Instead, we aim to establish local correctness via symiseton statemenby |

immediately beforéx..

One alternative is to use Lemma 6.53 (statement replacérneergplace theskip
at X; by |by|. However because we have removgdandby from the frame ofX.init,
such a modification makes it impossible to moduy or by beforeX;. Hence we use
Theorem 6.62 (statement introduction) to introd@cby -[skip] just afterX; instead.
We leaveby in the frame ofX; in order to allowby to be modified afteX,. Because this
is our first application of Theorem 6.62 (statement intraiun), we describe the proofs

of (6.64) and (6.65) in detall, i.e., we must prove

P A wpx.(cx.1).(—P) = wpx.(ax.1).(=P)
(Vieey [PJ5 X5 [PJ; Wi [P E [P]5 Y5 [P]5 Xo; [P])

where
P=(pcx =7 = by Apcy € IPCy) A (poy = 7 = bx A pox € IPCy)
is the conjunction of all enforced invariants in the prograife have
-P = (pcx =7 A (mby V pg, € IPCy)) V (poy = 7 A (—bx Vv pex € IPCy))

and we show that (6.64) holds as follows.

P A Wpx.(Cx.1).(=P) = wpx.(ax.1).(-P)

{wpx.(cx.1).(pox = 2)}
PA(pox = 1= (Ve (PO =7 A —bx))) A pox = 1 = wpx.(ax.1).(—P)

= false= wpx.(ax.1).(=P)

= true

We now prove (6.65) using repeated applications of Lemm@. 6=6r each € PCy,
the refinemeniXy; Y, C Y;; X, holds trivially by Lemma 6.71 (statement commu-
tativity). By Lemma 6.72 we may equivalently shdw = (Xo; |P|; Y; |P] C
Yis [Pl Xo5 [P)).
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Cased € IPCy. We prove the consequeXs; [PJ; Yi; [P] T VY; [P]; Xo; [P using
Lemma 6.67, where:(pcx = 7 A P) = pcx # 7 V —by V poy € IPCy.

e If wpy.Y,.(poy € IPCy) holds, we have

P= (=(pcx =7 A P) = wpy.Yi.(=(pcx = 7 A P)))

= true

e If wpy.VY.(poy € IPCy) holds, we have:

P= (=(pcx =7 AP)=wp.Y.(=(pcx =7 A P)))
=P= (poy =1 = pcx # 7V —by)
=P= (pex=7= (by = poy #1))

= true

Casd = 1. We havepcy = | A P = trueand hence the refinemefR|; Xy; [P; Y C
|P]; X3; |PJ; Y holds trivially using Lemma 6.69 using the fact that, = 1 A P =
wpx.Xs.(poy = | A P) holds.

Casd = 7. We havepey = | A P = by A pck € IPCx and

pcey = | AP = wpx.Xs.(poy =1 A P)
= by A pox € IPCx A pcx = 2 = (W, bx A pox € IPCy)
= false=- false

= true

Hence the proof of P|; Xs; [P|; i C |P]; Xo; |PJ; Y, follows by Lemma 6.69.

We then use Lemma 6.53 (statement replacement) to replabg blocking state-
ment (if by — by -[skip] fi). Lemma 6.53 requires that we introduce the following

enforced progress property:

pCx = 2 ~» pPCx # 2. (7.2)
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Correctness of(7.2)x. Because we have only assumed minimal progress (as opposed
to weak fairness), we prov&.2)x using Lemma 4.65 (binary induction). We use a well-
founded relation <, PCY) that corresponds to the reverse execution order of process
Y. Because we expedt to terminate, the base @<, PCY) should be labet, i.e.,

the relation(<, PCY) satisfies(Vkipc, 7 < 2 < 1 < k). Due tolAy (which ensures

pcy =] ~ poy < | for eachj € IPCy), this results in the following proof obligation

(Vipcg—ipey [l APCx =2 A poy =] = (7.3)
(9v.Y; = wpy.Yj.(poy <)) A (by V gv.Yj)])

which may be proved by case analysis on all possible valugs Becall thatl is an
invariant of the program. We leavein (7.3) so that the proof obligations obtained
during the case analysis make sensé.whs not present in (7.3), then we would obtain
proof obligation[pcx = 2 A poy = 7 = by |, which is equivalent tdalse(it is not true

that in all statepcx = 2 A poy = 7 = by holds).

Case j= 7. Because is the base of<, PCY,) andpcy = 7 = —gy.Y, holds, we obtain
proof obligation[| A pcx = 2 A pey = 7 = by |, which we satisfy by strengthening
the annotation and introducing enforced assettipat Y, (enforced assertioby at X,
negates the purpose of blocking>&f). This is justified because assertibpat Y, is

equivalent tod(pcy = 7 = by).

Case j= 2. Becausgdpcy = 2 = wpy.Yo.(pcy < 2)] holds, (7.3) is satisfied for this

case by introducing the following enforced invariant:

O(pox = 2 A pey = 2 = by V by). (7.4)

Case j= 1. Becausdpcy = 1 = gv.Y;] and[pcy = 1 = wpy.Y;.(pcy < 1)] hold,
this case is trivially satisfied. Thus, we obtain the follogiprogram. Note that we have
already proved local correctnesshyfat X, howeverpy may be falsified by proces§

and hence we obtaitGC by at X, .
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Init: pcx, pey := 0,0

Proces Processy
0: X.init ; 0: Y.init;
1: by, by -[skip] ; 1: bx, by -[skip] ;

2: (if by — by -[skip] fi) |2: (if bx — by -[skip] fi)
7: {?GC by}{?bx} 7: {?GC by}{?by}
?2(7.1)x: O(pex = 7 A by = poy € IPCy)
?(7.4): O(pcx = 2 A pey =2 = by V by)

IAx: pcx € IPCx ~~ pex € IPCx
Livex: (Vi.pc, POx =i ~» pCx # 1)

Correctness ofby at X,. This may be established via assignmarity := true that
immediately precedes,. We use Corollary 6.66 (assignment introduction) to intrcel

assignmens: by := true. The required proof obligations are straightforward tovero

using Lemmas 6.67 and 6.69.

Global correctness dik at X, is endangered by statemerit Hence we use Lem-

ma 6.39 (property strengthening) to repldce )x by the stronger

D(pr:T/\bY:>pCY€|PCYU{1}). (75)

Correctness of(7.4). This may be proved by ensuring that both statements pregedin
Xy andY; establish (7.4), however, a statement that establishesmediately beforé,
negates the purpose of the guard<ef Instead, we facilitate introduction bf := true
by using Corollary 6.66 (assignment introduction) to iduoe4: by := true immedi-

ately beforeX,. The required proof obligations may be discharged in agttéorward

manner.

Global correctness ofby at X.. This is trivial becauséy is only ever set tdrue by

processy.
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Init: pcx, poy := 0,0

Procesx Process

0: X.init ; 0: Y.init;

1: by -[skip] ; 1: by -[skip] ;

4: by :=true; 4: by :=true;

2: (if by — skip fi); |2: (if by — skip fi);
3: bx := true 3: by := true

7: {by }{bx} 7: {bx}{bv}

?(7.5)x: O(pex = 7 A by = poy € IPCy U {1})
IAx: pcx € IPCx ~ pex € IPCx

Livex: (Vi.pc, POx = 1 ~ pox # i)
(7.4): O(pcx = 2 A pey = 2 = by V bx)

Correctness of (7.5)x. This assertion may be falsified by executionXaf thus we

perform the followingwp calculation.

=pcx =3 = (bY = pcy ¢ IPCy U {1})
= pCX:3/\by:>pCY§ZIPCYU{1}

This suggests that we strength@ib)x to
O(pox € {3,7} A by = poy € IPCy U {1}).

However, this invariant may be falsified . A secondwp calculation results in the

following requirement
O(pex € {2,3,7} A by = poy € IPCy U {1}).
Repeating this process once moreXgrresults in
O(pox € {4,2,3,7} A by = poy € IPCy U {1}). (7.6)

It is now possible to establisfy.6)x in processX by falsifying the antecedent when
pcx = 4 is established, which is achieved via assignmsnt= false Thus, we use
Lemma 6.54 (statement replacement (2)) to repKadey statement: by := false Thus,

we obtain the final program in Fig. 7.2.
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Init: pcx, poy := 0,0

Procesx Process

0: X.init ; 0: Y.init ;

1: by := false; 1: by := false;

4: by :=true; 4: by :=true;

2: (if by — skip fi) |2: (if bx — skip fi)
3: by :=true; 3: by :=true;

7: {by}{bx} 7 {bx}{by}

IAx: pcx € IPCx ~~ pcx € IPCx
Livex: (Vi.pc, Pox =i ~ pcx # i)
(7.4): O(pcx = 2 A pey = 2 = by V by)
(7.6)x: O(pex € {4,2,3,7} AN by = poy € IPCy U {1})

FIGURE 7.2: Initialisation protocol

7.1.3 Discussion and related work

Feijen and van Gasteren [FvG99] present a derivation trstdinphasises safety, and
afterwards progress is argued in an ad-hoc manner. Thaaiter design by Dongol
and Goldson [DGO06] addresses progress formally, but theadem is less structured,
and program changes are not well motivated. Yet anothevatemn of the protocol is
provided Dongol and Mooij [DMO06] where the progress-bademhges are motivated by
the weakest immediate progress predicate transformenoidih formal, the derivation
in [DGO6] consists of a number of low-level calculations. Wave derived the pro-
gram using the newer techniques from [DMO08] (see Chapteridg¢iwmakes proofs of
progress more manageable. We have further improved on thatiens by relating the
initial specification to each derived program during the@dgion via refinement. This
allows us to conclude that any behaviour of the derived @nogs a possible behaviour
of the initial specification. The derivation techniques efjén and van Gasteren and
Dongol and Mooij allow arbitrary changes that could potalhtifalsify an assertion that

has already been proved correct.

In order to demonstrate the sorts of derivations in [FvG98I0B, DMO08] that are
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disallowed by our newer techniques in Chapter 6, we presspeeification of the ini-
tialisation protocol that cannot be refined. We note thatcthde the initial program in
[FvG99, DG06, DMO06] but with the addition of enforced profes.

Suppose that the initial specification is given below, wH@@yx andIPCy are the
sets described in Section 7.1.1. Due to the enforced piepgethe set of traces of the

T are

program is empty. The statements within procEssit that establishpc
blocked becaus¥ is executingY.init (and vice-versa); and hence the program suffers
from total deadlock. Meanwhile, because enforced asseliiey specifies that no
total deadlock exists, the program contains no traces, andehcannot be refined. We

describe how the erroneous specification is discovered bgroof.

Init: pcx, poy := 0,0

Procesx

Processy

0: X.init
T: {7 PCy ¢ |PCY}

0: Y.init
T: {7 PCx Q |PCx}

IAx: pcx € IPCx ~» pcx Q IPCx
?Livex: (Vi.pcy POx =1 ~ pex # i)
In order to satisfy the queried properties, we will be reedito introduce a synchro-
nisation statement just befo¥e. The only way to achieve this is to use Theorem 6.62
(statement introduction), however, even introductionl ofkip to obtain the program

below is problematic.

Init: pcx, pey := 0,0

ProcesX Processy

0: X.init ; 0: Y.init

1: skip 7: {?pcx & IPCx}
7:{?7pcy € IPCy}

IAx: pcx € IPCx ~» pcx Q IPCx

?Livex: (Vi.pcy POx =1 ~ pex # i)

The conjunction of all enforced properties is

P = (pcx =7 = poy € IPCy) A (poy = 7 = pox & IPCx).
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We consider statemelf such thaj € IPCy A wpy.Y;.(pcy = 7) (i.e., the last statement

in init.Y). We have the following calculation for (6.68).

—(pox =7 A P) = wpy.Yj.(—(pcx = 7 A P))

{wp calculatior}

—(pox =7 A poy € IPCy) A pey =) = (poy :=7).(pcx # 7 V poy € IPCy)

{X; is conjunctivg

pey =] = pox # T
For (6.70), we obtain the following calculation.

(poy = A P) = wpx.X;.(poy = A P)
= {wpcalculatior}

PCr =] AP # T Apcx =1 = (pCx := T).(PCy =] A PCx # T)
= {logic}

pcy =] A pcx = 1 = false
= {logic}

Por =] = pox 7 1

These calculations indicate that control of procEssannot be before or aftef;
when procesy is about to execute the last statement of hifThus,pck € IPCyx must
hold. However, the last statement in iiitis blocked precisely becaugeyx € IPCy
holds.

7.2 The safe sluice algorithm

Our next few examples address the core problem of mutualsxel between two pro-
cesses. We first present the derivation of the safe sluiagidign [FvG99], which ad-

dresses mutual exclusion without providing any progressantees; in fact, the algo-
rithm is known to suffer from total deadlock. Its derivatiftoms the common start to

Sections 7.3 and 7.4 where algorithms that guarantee theivprogress are derived.
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7.2.1 Specification

The specification of the problem is given in Fig. 7.3. Onceimghe solution we are
heading for is symmetric, and hence we focus our discussigracess only. We use
statementXncs andXcs to represent the non-critical and critical sectionsrotessX,

respectively. In order to reason about the control point&cg andXncs more easily,

we define sets:
Nx = labelg0: Xncs
Cx = labelq1:Xcs — {1}.
We assume that execution ¥ts eventually completes, i.e., we assume that the follow-
ing holds:
CAX = PCx € Dx ~> PCx € Dx.
where
Dx = CxU({l}.

This property is not guaranteed for the non-critical sectiwowever, we assume that

each atomic statement ¥ancs terminates, i.e.,
TAx = (\V/i:Nx D(pr == txX,))

Notice that this does not excludencs from blocking forever, including at the start of its

execution, or from containing a non-atomic, non-termimgtoop.

The safety requirement is that the critical sections areuallyt exclusive as ex-
pressed bySafein Fig. 7.3, which is equivalent tal(—(pcx € Cx A poy € Cy)).
The progress requirement for processs that it makes individual progress provided

pcx € Ny, which is expressed by propeityey.

7.2.2 Derivation

Becauseck andpcy may not be explicitly modified by any program statement, vime ai
to establishSafeby introducing fresh private variables to the program. We uem-

ma 6.57 (extend frame) to introduce variabbgs by of type Boolean together with the
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Init: pcx, poy := 0,0

Procesx Processy
! !
0: Xncs; |0: Y.ncs;
1:  Xes 1:  Yecs
] ]

?Safe O(pex € Cx V pey ¢ Cy)
TA)(: (vi:Nx D(pr =i= tx.Xi))

CAx: pcx € Dy ~ pcx ¢ Dx
Livex: (Vi.pcy—ny PCx =1 ~» pCx # 1)

FIGURE 7.3: Specification for two-process mutual exclusion

enforced invariant

O(pox € Cx A by = poy & Cy) (7.7)

which is equivalent tad(by = pcx & Cx V poy € Cy). Due to(7.7)x and its symmetric
equivalentSafeholds if the following does:
O(pox & Cx V poy € Cy V by) (7.8)

together with the symmetric condition in procegés Thus, we obtain the following

program.

Init: bx, by -[pcx, pey := 0, 0]

Procesx Process/

! !
0: bx,by-[Xncg; [0: by, by-[Y.ncq;
1: by, by [Xcq 1: bx,by-[Y.cq

] ]
?2(7.7)x: O(pex € Cx A by = poy € Cy)
?(7.8)x: O(pex € Cx V pey € Cy V by)
Safe O(pcx ¢ Cx V pey & Cy)
TAC (Ving O(pox =1 = tx.X))

CAx: pcx € Dx ~ pcx ¢ Dx
Livex: (Vi.pcy—ny PCx =1~ pCx # 1)
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The proofs below are simplified if we remolig andby from the frames oKncs and
Xcs. However, becaugg andby will need to be modified after botkncs andXcs, we
first use Theorem 6.62 (statement introduction) to intredstatements: by, by -[skip]
and 3: by, by -[skip] immediately afterXncs andXcs, respectively. Then using Lem-
ma 6.58 (frame reduction), we remove bbfhandby from the frames oKncs andXcs.

Thus the code for proce3sbecomes:

ProcesX = x|
0:  Xncs;
2. by, by -[skip] ;
1. Xcs;
3t bx, by -[skip]

Correctness of(7.7)x. Using Lemma 4.18 (invariant), we must verify correctness of
(7.7)x against statements that may estabjish € Cx or by, and those that may falsify
pcy ¢ Cy. Statements irX that may establislby falsify pcx € Cx, and hence may

trivially be discharged. For statemen¥s, that may establishcy € Cyx, we have:

Case ie Cy.

(7.7)x = wWpx.Xi.(7.7)x
& {wpis monotoni¢
(7.7)x = wpx.X.(by = poy & Cy)
= {wpdefinition}{X; does not modifyoy or pcy}
(by = poy € Cy) A pox =i = (by = pey € Cy)
= {logic}
true

Case i= 1.

& {wpis monotoni¢

(77))( = prxl(by = PCy € Cy)
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=  {wpdefinition}{logic}
pcx =1 = (by = poy ¢ Cy)

This calculation suggests that we use Lemma 6.39 (propaapgthening) to replace

(7.7)x by enforced invariant
pcx € Dx A by = poy € Cy (7.9)

whereDy = Cx U {1}.

Correctness of (7.8)x. This is established using Lemma 4.18 (invariant) which in-
volves case analysis on the program statements. GaseslY; such that € Ny U Ny U

{2, 3} are trivial because they establigt ¢ Cx Vv pcy ¢ Cy. CasesK andY; such that

i € Cx U Cy are trivial because these statements do not mdsifyFor the remaining

statementsx; andY;, we have the following calculations.

Case X.

& {wpis monotoni¢{1 ¢ Cy}
pcx =1 = pcy € Cy V by

This condition may be established by enforcing assegimnZ Cy V by at X;.

Case Y. Using(7.9)y, i.e.,0(pcy € Dy A bx = pox € Cx), and assertiopcy ¢ Cx V
bx atY; (which may be expressed agpcy = 1 = pcx ¢ Cx V byx)), we have the

following calculation.

(7.8)x = wpy.Y1.(7.8)x
& {wpis monotoni¢{1 ¢ Cy}

pey =1 = pcx & Cx V by
& {pox € Cx V by atY; }{logic}

poy = 1 A (pex € Cx V by) = pex € Cx
< {9y}

true
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Init: by, by -[pcx, poy := 0, 0]

Procesx Processy
! !
0:  Xncs; 0: Y.ncs;
2. by, by [skip] ; 2. by, by [skip] ;
1: {?poy € Cy V by} Xes; [1: {?pox € Cx V bx} Y.cs;
3: by, by [skip] 3: by, by [skip]
] ]

?(7.9)x: O(pcx € Dx A by = poy ¢ Cy)
Safe O(pex ¢ Cx V pey ¢ Cy)
TAC (Ving B(pox =i = tx. X))
CAx: pcx € Dx ~~ pcx € Dx

Livex: (Vi.pcy—ny PCx =1~ pCx # 1)
(7.8)x: O(pex € Cx V pey € Cy V by)

Local correctness ofpcy ¢ Cy V by at X;. This may be established via an assignment
statemenby := true that immediately precede§, however, such an assignment makes
it difficult to establish correctness ¢7.9)x. The alternative is to introduce synchro-
nisation statemeritby | immediately beforeX;. Thus, using Theorem 6.62 (statement
introduction), we introduce skip with an empty frame aX,. The required proof, (6.65)

is straightforward to verify using Lemma 6.67 and Lemma 68%n using Lemma 6.53
(statement replacement), we replaceskip at X, with | by| and introduce the following
enforced progress property

pCx = 4 ~~ pCx # 4. (7.10)

Becauséy is not in the frame of.cs, global correctness pt, ¢ Cy V by atX; holds

against all statements in proceéexcepty;. ForY;, we obtain the following calculation:

(pey € Cy V by) A pox =1 = wpy.Yi.(poy € Cy V by)
& {wpis monotoni¢

pcx =1 A pey =1= by
=px=1=pcy #1Vhby

Thus, we use Lemma 6.39 (property strengthening) to re@sasertiompcy ¢ Cy Vv by

atX; by pcy € Dy Vv by which remains locally correct due to gudrd
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Init: by, by -[pcx, pey := 0, 0]

Procesx Processy
! !
0:  Xncs; 0: Y.ncs;
2. by, by [skip] ; 2. by, by [skip] ;
4:  (if by — skip fi) ; 4:  (if bx — skip fi) ;
1: {?GCpcy ¢ Dy V by} Xcs; |1: {?GCpcx & Dx V bx} Y.cs;
3: by, by [skip] 3: by, by [skip]
] ]

?(7.10)x: pcx =4 ~ pox # 4
?2(7.9)x: O(pcx € Dx A by = poy € Cy)
Safe O(pcx € Cx V poy € Cy)
TAG (Ving O(pex =1 = tx.X))
CAx: pox € Dx ~ pex & Dx
Livex: (Vi.pcx—Ny POx =1~ pCx # i)
(7.8)x: O(pcx € Cx V pey € Cy V by)

FIGURE 7.4: Towards the safe sluice algorithm

Because the non-critical sectionsr(cs andY.ncs) may contain a non-terminating
loop, to ensure individual progress for the mutual exclagicoblem, one must assume
weak fairness, which suggests tiatshould be stable under proceé$DMO06]. How-
ever, by(7.9)x, assignmenby := falsewill eventually need to be introduced in process
Y, which meandy, cannot be stable under proceés Our solution is to weaken the
guard ofX, by

() using a disjunctive guard a& and ensuring stability of only one of the disjuncts,

or

(i) introducing a second synchronisation statement.

The consequences @j are explored in Section 7.3, leading to Peterson’s algorith

while (ii) is explored in Section 7.4, leading to Dekker’s algorithm.
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7.3 Peterson’s mutual exclusion algorithm

The next example we consider is Peterson’s mutual exclusigorithm for two pro-
cesses [Pet81]. The derivation in [FvG99] first emphasiatstys and afterwards prog-
ressis ensured in an ad-hoc manner. An alternative demvativdSFvG97] emphasises

progress-based derivation on an ad-hoc formalisation.

7.3.1 Derivation

The derivation picks up from the program in Fig. 7.4. Ourtsigg is to replace the guard
by at X, by the disjunctiorby Vv sy and ensure stability of only one of the disjuncts, say
Sy. Thus, we obtain the program in Fig. 7.5. We aim to prove tfiaement using The-
orem 6.47 (data refinement with enforced invariants) uduegallowing representation

program:
rep = by, by :=byx Vs by Vsy; remsy,sy.

This ensures that the guard Xf in the abstract and concrete programs are equivalent.
Because the refinement may not preserve properties on@xgagables, we turn prop-
erties in Fig. 7.4 that involvey andby (namely(7.8)x and(7.8)y) back into enforced

properties. This modification is justified by Lemma 6.40.

Application of Theorem 6.47 (data refinement with enforadhriants) must take
all enforced invariants and assertions into account. Heveeeplace each enforced
assertion and invariam® with wp.rep.P, which is allowed becausep is conjunctive.
Thus, globally correct assertigmoy ¢ Dy V by atX; is replaced withpcy ¢ Dy V by Vv
Sy, and(7.8)x and(7.9)x are respectively replaced by

O(pox & Cx V poy € Cy V by V sy) (7.11)

D(pr € Dy A (by V Sy) = PCy ¢ Cy> (712)
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Init: sy, Sy, bx, by -[[pr, pcy := 0, 0]]

Procesx Processy
! !
0: Xncs; 0: Y.ncs;
2: by, by, sx, sy -[skip] 2: by, by, sx, sy -[skip]
4:  (if by V sy — skip fi) ; 4:  (if bx V sx — skip fi) ;
1: {?GCpcy €Dy VbyVsy} Xcs; [1: {?GCpcx € Dx V bx V sx} Y.cs;
3: by, by, sx, sy -[skip] 3: by, by, sx, sy -[skip]
] ]

?(7.10)x: pex =4 ~ pox # 4
?2(7.11)x: O(pex € Cx V poy € Cy V by V sy)
?(7.12)x: O(pex € Dx A (by V sy) = pey & Cy)
Safe O(pcx € Cx V poy € Cy)
TAC (Ving B(pox = i = tx. X))
CAx: pcx € Dx ~» pcx & Dx
Livex: (Vipcx—ng POx =1 ~» pCx # )

FIGURE 7.5: Peterson’s derivation: replace guard

We define

gcax = pcx = 1 = pcy € Dy V by

gcay = pcy = 1 = pcx & Dx V by

PP = (7.10)x A (7.10)y A (7.11)x A (7.11)y A
(7.12)x A (7.12)y A gcax A gcay

andQQ = wp.rep.PP.

Condition (6.48).

add by, by; by, by -[pcx, pey := 0,0]; [PP| C
addby, by, sx, Sy; Sx, Sv, bx, by -[pcx, pey := 0,0]; [QQJ; rep
& {Lemma 6.15 (monotonicity) definition of QQ}
(by,by) :€ B? |PP| C addsy, Sy; (S, Sy, bx, by) :€ B*; |wp.rep.PP|; rep
& {Lemma6.16
(by,by) :€ B |PP| C addsy, sy; (S, Sv, bx, by) :€ B*; rep; |PP|
& {Lemma 6.15 (monotonicity) definition ofrep}
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{x:€BO(xy) :€ B x:=xVy}
(bx, by) € B2 C adde, Sv; (bx, by) € BQ; rem Sx, Sy
= {Lemma6.56{Lemma 6.15 (reflexivity})

true

Condition (6.49).We recall that we usay.i andcy.i to refer to the statement labelled
in processX of the abstract and concrete programs, respectively. Toef for each of

these statements is trivial except tgr4.

rep; [PPJ; ax.4; |[PP| C [QQJ; cx.4; [QQJ; rep
= {expandax.4 andcy.4}
rep; [PPJ; [pox =4 A by|; pox:=1; |[PP] C
[QQJ: [pox =4 A (by v sy)]; pox = 1; [QQY; rep
& {Lemma 6.16{rep; pcx := 1 O pcx := 1; rep}
lwp.rep.(PP A pcx = 4 A by)|; pex :=1; |wp.rep.PPJ; rep C
[QQJ; [Pk =4 A (by V sy)J; pox == 1; [QQJ; rep
=  {repis conjunctivé {Lemma 6.15 (commutativity and monotonici}y)
|pcx = 4 A wprep.PP A (by V sy)|; pox :=1; |wp.rep.PP| C
[Pk =4 A QQA (by V sy)|; pox == 1; |QQ)]
= {by definitionQQ = wp.rep.PP}{Lemma 6.15 (reflexivity)

true

Condition (6.50).This proof is trivial because no new statements are have in¢en

duced.

Condition (6.51).We note that becaugep is deterministic and becausg andsy do

not appear irPP, —wp.rep.PP = wp.rep.(—PP).

rep; [=PPV (Vp wpp.(8p.1).(-PP)) | C [=QQV (¥ Wpy.(Gp.1)-(-QQ)) J; rep
& {Lemma 6.16{Lemma 6.15 (monotonicity)

[wp.rep.(=PP vV (Vp wpp. (8p.1).(=PP))) | E [~QQV (Vp, Wpp-(Cp-i).(-QQ))]
= {Lemma 6.15 (guard strengtheningyvplogic}
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~QQV (7, WP.(Go-1). (-QQ)) = —~Wp.rep.PPV (¥, Wi (rep; ap.i).(-PP)))
& {definition of QQ}{logic}
(Vo WPp.(Cp.i; rep).(—PP) = wp,.(rep; a.i).(—~PP))

We now perform case analysis o PC. Due to the symmetry between procesEes

andY, we only need to consider the statements within progese.,i € PCx.

Cases i€ Nx U Dx. These cases are trivial becawsei andcy.i are identical, and

furthermore, do not modifiy, by, sx, andsy.

Cases ic {2,3}. We consider = 2 in detail. The proof foi = 3 is identical.

wpx. (bx, by, Sx, Sy -[skip]; rep).(—=PP) = wpx.(rep; by, by -[skip]).(—=PP)
= wp.(bx, by :€ B?; pox := 4).(—PP) = wp.(bx, by -[skip]; pcx := 4).(-PP)

= frue
Cases i= 4.

wpx.(Lby v svJ; rep).(~PP) = wpx.(rep; |by]).(=PP)
{Lemma 6.16

wp.(|by V sy|; rep; pox :=1).(-PP) = wp.(|by V sy]; rep; pcx := 1).(—-PP)

= true

Condition (6.52) Becauseep is continuous, this condition holds by Lemma 6.61.

Correctness of(7.11)x. This proof is identical tq7.8)x.

Correctness of(7.10)x. We aim to use Lemma 4.83 (stable guard), where we choose
Ny to be the seRR Dy to beTT, andRto bepcy = 4 A sy. Thus for (4.75), we must

introduce enforced property

O(pcx =4 A poy € Ny = by V sy). (7.13)
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Then, to ensurst,.R holds becausst,.(pcx = 4) holds, we introduce the following
enforced property:

Sty.Sy. (7.14)

We introduce a well-founded relatigr, PCy), which for (4.76) we ensure < k holds

for all k € Ny. We ensure < j holds for allj € Dy, and hence due tGAy, property

pcy =] A ] € Dy ~» poy < ] holds, which guarantees (4.72). The rest of the labels in
(<, PCy) correspond to the reverse execution order of pro¥essd we motivate the
base of the ordering below. Becausepx.Xy.(pcx # 4) | holds andy; cannot establish
pcx # 4, by monotonicity, (4.85) holds if the following holds:

(Vi:(pey—ny)—py [ APCx =4 A poy =] = (7.15)
wpy.Yj.(PCy < j V Sy) A (Sy V by V ov.Y))]).
Since procesy¥ is a potentially non-terminating loop, finding an approfibase for
(<, PCy) is difficult. One possible approach is to use Heuristic 4v@tich says that we

may choose the label of blocking statem&ptas the base. However, the proof of the

base caspcy = 4 requires the introduction of

O(pox =4 A poy =4 = —bx A =sx A (by V sy)) (7.16)
which specifieg7.16)x A (7.16)y, i.e., total deadlock whepcx = 4 A pcx = 4 holds,
and hence is problematic. That is, lalés a poor choice as a base(ef, PCy).

Instead, we use Heuristic 4.61 to introduce statemiest := true and use labe)
as the base af<, PCy). The placement of; is unclear, however, case analysisjon

(7.15) proceeds as follows.
Case je {2, 3}. Each of these cases are trivial becaysestablishepcy < j.

Case j= 4. Becausevp,.Y,.(poy < 4) holds, this case is discharged by enforcing the

following invariant:
O(pex =4 Apey =4 = by VsyVbxVs) (7.17)

which ensures that one &f, andY, is enabled whepcx = 4 A pcy = 4 holds.

Of the newly introduced conditions, (7.17) holds by Lemm294(invariant conse-

guent) if we introduce statements that establish the camsgcat control points that
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immediately precede statemeitsandY,. This is also consistent with Heuristic 4.80
which suggests that an appropriate base of a well-foundatiae should immediately
precede a blocking statement. Hence we use Theorem 6.G2n¢stat introduction)
to introduces: s, Sy -[skip] immediately afterY,, then use Lemma 6.54 (statement re-
placement (2)) to replacé by 5: sx -[sy := true]. We keepsx in the frame ofY; to allow

future modification oky at or afterYs in processy.

Init: sx, Sy, bx, by -[pcx, pey := 0, 0]

Procesx Processf
0: Xncs; 0: Y.ncs;
2: by, by -[skip] ; 2: by, by -[skip] ;
5:  sy-[sx :=tru€] ; 5:  sx-[sy :=trug] ;
4:  (if by V sy — skip fi) ; 4:  (if bx V sx — skip fi) ;
1: {?GCpcy &€ Dy Vby Vsy} Xcs; [1: {?GCpcx € Dx V bx V s} Y.cs;
3: by, by, sx, sy -[skip] 3: by, by, sx, sy -[skip]
] ]

?(7.12)x: O(pcx € Dx A (by V sy) = poy € Cy)
?2(7.13)x: O(pex =4 A pey € Ny = by V sy)
?(7.14)y: sty.Sy
2(7.17): O(pecx =4 Apey =4 = by Vsy Vbx Vsx)
TAC (Ving O(pex =1 = tx.X))
CAx: pcx € Dx ~~ pcx € Dx
Livex: (Viipcx—Ny PCx =1 ~» pCx # i)
Safe O(pcx € Cx V pey € Cy)
(7.11)x: O(pex € Cx V pey € Cy V by V sy)

Correctness of(7.12)x. The proof against each program statement exgg@indY;

is trivial. For case¥, andY;, we have the following calculations.

Case X.

(7.12)x = wWpx.X4.(7.12)x
= {wpecalculatior}{4 & Cx}{1 € Dx}

pcx =4 A (by V sy) = poy € Cy
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This suggests that we introduce enforced assefbery sy) = pcy ¢ Cy atX,.

Case Y.

(7.12)x = wpy.Y1.(7.12)x

& {wpcalculation {1 ¢ Cy}{wpis monotonig
pey = 1 = —(pcx € Dx A (by V sy))

= pcx € Dx A (by V sy) = poy # 1

This suggests we use Lemma 6.39 (property strengthenimgptace(7.12)x by

O(pcx € Dx A (by V sy) = poy & Dy). (7.18)

Correctness of(7.18)x. This time, we need to consider statemextandY,.

Case X.

= {wpcalculation{4 ¢ Cx}{1 € Dx}
pcx =4 A (by V sy) = poy € Dy

This suggests that we strengthen the enforced assertiyrtaiby v sy) = poy & Dy.

Case Y. We use assertiooy VvV sx = pcx € Dx atY, introduced above.

& {wpcalculatior}{4 ¢ Dy }{wpis monotonig
pCY:4/\(bx\/Sx):>pr¢Dx\/_|(by\/Sy)

pCY:4/\(bx\/Sx)/\(by\/Sy):>pr€Dx

{(bx V Sx) = PCx € Dy atY4}

true

Global correctness ofpcy € Dy V by V sy at X;. This is only endangered by state-

mentY,. Usingby Vv sx = pcx & Dx atY,, we have the following calculation.
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pcx = 1 A (pey € Dy V by V Sy) = wpy.Ys.(poy € Dy V by VvV s¢)
=pcx=1Apcy=4A (bx Vsx)=byVsy

=  {assertion a¥,}
pox =1 Apey =4 A (bx vV sx) A pox € Dx = by V sy
= {1 € Dx}

true

Correctness of(7.14)y.  This may be achieved by using Lemma 6.58 (frame reduction)

to removesy from the frame ofy; andinit.

Correctness of(7.13)x. Correctness in processagainst each statement excptis
trivial, because they falsify the antecedent{@fi3)yx. Statemenk; establishepcy = 4

and may also falsifsy. Hence we use Lemma 6.39 (property strengthening) to replac
(7.13)x by

O(pcy € Ny = by). (7.19)

Correctness of(7.19)x. Correctness against proceéémay be achieved by using Lem-
ma 6.58 (frame reduction) to remole from the frame of each statementfn Because
by is not modified byY.ncs, correctness in procegsmay be achieved by using Lem-
ma 6.54 (statement replacement (2)) to repldcdy by := true. Becausdnit estab-
lishespcy € Ny, we use Lemma 6.55 (initialisation replacement) to repladewith

PCx, PGy, by, by := 0, 0, true, true.
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Init: pex, pey, bx, by := 0, 0, true, true

Procesx Processf
! !
0:  Xncs; 0: Y.ncs;
2 bx-[skip] ; 2. by [skip] ;
5:  Sy-[sx :=true]; 5. Sx-[sv :=trug];
4: {?by V sy = pcy € Dy} 4:  {?bx V sx = pcx € Dx}

(if by V sy — skip fi) ; (if bx V sx — skip fi) ;
1: {por ¢ Dy Vby Vsy} Xcs; |1: {pcx & Dx V bx V sx} Y.cs;
3: by :=true 3:  by:=true
] ]
2(7.17): O(pex =4 Apey =4 = by V sy V bx V sx)
TAC (Ving O(pox =1 = tx.X))

CAx: pcx € Dx ~» pcx & Dx
Livex: (Vipcx—ng PO =i~ pox # i)
Safe O(pcx € Cx V poy € Cy)
(7.11)x: O(pcx € Cx V pey € Cy V by V sy)
(7.14)y: sty.sy
(7.18)x: O(pcx € Dx A (by V sy) = poy € Dy)
(7.19)x: O(pcy € Ny = by)

Correctness ofby VvV sy = poy € Dy at X;.  To simplify our reasoning, we split the

assertion into

by = pcy & Dy at Xy (7.20)
Sy = pcy ¢ Dy at X, (7.21)

Correctness of(7.20)x. Local correctness is difficult to achieve becabgeannot be
modified in procesX. Hence we turn(7.20)x into a property of proces¥ and use

Lemma 6.39 (property strengthening) to repl&cte0)x by

O(poy € Dy = —by).

Correctness of this new property in processs trivial becauseX does not modifyby.

To achieve correctness in proceéswe usewp calculations and obtain the following
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property, which impliesI(pcy € Dy = —by).

O(poy € Dy U {4,5} = —by) (7.22)

Correctness of(7.22)x. This may be achieved by using Lemma 6.54 (statement re-
placement (2)) to replac¥, by 2:by := false5:, i.e., the statement that establishes

pcy = 5 also establishesby.

Correctness of(7.21)x. Local correctness may be achieved by introducing a statemen
that falsifiessy just beforeX,. However, due t@7.17), the statement befodé, must also
establishsy. Hence we use Lemma 6.54 (statement replacement (2)) tace@) with

the multiple assignment sy, sy := true, false

Global correctness may be endangered by statewemthich gives us the following

calculation.

pcx =4 A (Sy = poy € Dy) = wpy.Y,.(Sy = poy € Dy)
=pox =4 Apoy =4 A (S V bx) = sy
= (pox =4 ApCy =4 ASx= —Sy) A (PCcx =4 A poy =4 A by = —Sy)
= {(7.22)y}

pcx =4 Apoy =4 A Sx = Sy

By combining the resulting formula witfv.17), we obtain

pcx =4 Apcy =4 = (Sx & —Sy) (7.23)
which using Lemma 6.39 (property strengthening), may be tseeplacg7.17). Cor-
rectness of (7.23) is trivial to prove, thus, we obtain thalfprogram in Fig. 7.6.
7.3.2 Discussion

We have derived Peterson’s algorithm from the safe sluigershm and in particular

have shown that Peterson’s is a refinement of safe sluice.d&heation in [DMO06]
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Init: pex, pey, bx, by := 0, 0, true, true

Procesx Processf
l *]
0:  Xncs; 0: Y.ncs;
2: by := false; 2: by :=false;
5:  sx,Sy := true, false; 5.  sx,Sy := falsetrue;
4:  {sy = pcy € Dy} 4:  {sx = pcx € Dx}

(if by V sy — skip fi) ;
1: {pCY Z Dy V by v Sy} Xcs;

(if bx V sx — skip fi) ;
{pcx &€ Dx V bx V sx} Y.cs

b

3: by :=true 3:
] ]
TAC (Ving O(pex =1 = tx.X))

by := true

CAx: pcx € Dy ~ pcx ¢ Dx
Livex: (Vipcx—ng PO =i~ pox # i)
Safe O(pcx ¢ Cx V pey & Cy)
(7.11)x: O(pcx € Cx V poy € Cy V by V sy)
(7.14)y: sty.sy
(7.18)x: O(pcx € Dx A (by V sy) = poy € Dy)
(7.19)x: O(pcy € Ny = by)
(7.22)x: O(pey € Dy U {4,5} = —by)
o

(7.23): O(pex =4 Apoy =4 = (Sy & —%))

FIGURE 7.6: Peterson’s algorithm

follows a similar pattern, but the guard of the synchromisastatement is simply weak-
ened without ensuring a refinement. Normally, weakeningadjis not a refinement

because the new program could potentially end up with maceg than the original.

Note that one could perform a final data refinement by introdya variables which
may take a value fromX, Y}, and turn statemerX, into v := Y, which means, =
(v = X). However, we do not present this refinement because it indatd exercise in

data refinement.
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7.4 Dekker’s algorithm

In this section, we present a derivation of Dekker’s aldgnonifDij68], which is histori-
cally the first mutual exclusion algorithm for two concurrenomponents. The majority
of its code is concerned with progress [FvG99], which makemiattractive experi-
ment for our program derivation techniques. This algoritisnaifferent from Peter-
son’s because not all guards are stable. Furthermore, ihare additional restriction
that each guard may only access at most one shared varidbiemains a challenge
to reason formally and effectively about the progress ptogseof Dekker’s algorithm
[Fra86, FvG99].

7.4.1 Derivation

This derivation picks up from the program in Fig. 7.4. We &ddrcorrectness of prog-
ress property7.10)y, i.e.,pcx = 4 ~» pcx # 4 without requiring stability of the guard
of X,.

Correctness of(7.10)x. We use Lemma 4.81 (unstable guard), where we substitute
Ny for RRandDy for TT. Condition (4.75) requires that we introduce the following

enforced invariant(pcx = 4 A poy € Ny = by), which is implied by
O(pcy € Ny = by) (7.24)

We introduce a well-founded relatigr, PCy) such tha® < j for eachj € Ny, which
satisfies (4.76). Furthermore, we ensdre< k for eachk € Dy, thus due toCAy,
pcy = Kk ~~ pcy < k holds, and hence (4.72) holds. Becaugi.Xy.(pcx # 4) holds, by
monotonicity ofwp, proof obligation (4.82) is implied by:

(ij(PCY*NY)*DY [l AN pcx = 4 N pCy :j = (by V ngj) AN WpyYJ(pCY =< ]) ]) (725)

We use Heuristic 4.80 and aim to use a blocking statement aseadi( <, PCy). How-
ever, label is a poor choice because the conditions that result from Lam8 (base

progress) specifies total deadlock whem = 4 A poy = 4.
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Instead, we introduce a new blocking statement (with a fgesdrd) to use as the
base of(<,PCy). We use Lemma 6.57 (extend frame) to introduce fresh varsahl
andsy to the program, then using Lemma 6.58 (frame reduction) wewesy, andsy
from the frames oXncs, X, andXcs. By Heuristic 4.80 statements at the base of the
well-founded relation should precede blocking statemefiésice we use Theorem 6.62
(statement introduction) to introduce statemeriiy, by -[skip] immediately beforéy,.

We keepby andby in the frame ofY; because it precedes blocking stateméntith
guardby. Finally, using Lemma 6.53 (statement replacement), wiacejY; with block-
ing statementif sx — by, by -[skip] fi), which requires that we introduce the symmetric

equivalent of the following progress property.

pcx = 5 ~» pCx # 5. (7.26)

Init: bx, by, sx, Sy -[pcx, poy := 0, 0]

Procesx Processf
0:  Xncs; 0: Y.ncs;
21 by, by, sx, sy -[skip] 2 bx, by, sx, sy -[skip]
5:  (if sy — by, by -[skip] fi) ; 5:  (if sx — by, by -[skip] fi) ;
4:  (if by — skip fi) ; 4:  (if bx — skip fi)
1: {?GCpcy ¢ Dy V by} Xcs; |1: {?GCpcx & Dx V bx} Y.cs;
3: by, by, sx, sy -[skip] 3: by, by, sx, sy -[skip]
] ]

?(7.9)y: O(pcx € Dy A by = poy € Cy)
?(7.24)x O(pcy € Ny = by)
2(7.25)x: (Y. (pcy—Ny)—py [ APox =4 A poy =] = (by V gv.Yj) Awpy.Y.(pcy <j)])
?(7.26)x: pcx =5 ~» pox # 5
Safe O(pcx € Cx V poy € Cy)
TA (Ving O(pex = 1 = tx.X))
CAx: pox € Dx ~ pex & Dx
Livex: (Vi.pcy—ny PCx =1~ pCx # 1)
(7.8)x: O(pex & Cx V poy € Cy V by)

Correctness of(7.25)x. This involves case analysis & (PCy — Ny) — Dy.
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Cases je {2,3}. These cases are trivial becaiés non-blocking and guaranteed to

establistpc, < j.

Case j = 4. We prove this case using Lemma 4.65 (deadlock preventingress)
resulting in proof obligationl A pcx = 4 A poy = 4 = by V by], which may be

satisfied by introducing enforced invariant:

O(pox =4 A poy =4 = by V by). (7.27)

Case j= 5. This case represents the base of the relation. Hence we ns@d.d.78
(base progress) to obtain proof obligatidn\ pcx = 4 A poy = 5 = by A =Sk |, which
may be satisfied by introducing enforced assertigpat X, andby at Y5. Note that this
is the only possible option becausgat X, negates the purpose of the guardXgfand

—Sy atYs specifies individual deadlock.

Correctness of(7.26)x. We aim to establish this property by using Lemma 4.83 (stable
guard) where we choo$®Rto beNy, TT to beDy, andRto bepcy = 5 A sy. Condition
(4.75) is satisfied by (7.28) below. Becasse(pcx = 5) holds, the stability requirement

is satisfied by (7.29) below.

O(pcx =5 A poy € Ny = Sy) (7.28)

Sty.Sy. (7.29)

Then, we introduce a well founded relatio, PCy), such tha < j for eachj € Ny,
which satisfies (4.76). Furthermore, we enstire k for eachk € Dy, which due to
CAx ensurepcy = k ~» pcy < kand (4.72) is satisfied. Because proc¥ssannot

modify pcx, conditionpcx = 5 = wpy.Y.(pcx = 5) holds and (4.85) is implied by:

(Vi:(cy—Ny)—Dy[ I APCx =5 A poy =j = Wpy.Yj.(poy < j V Sy) A (Sy V av.Y))]).
(7.30)
Once again, the label corresponding to the blocking staté&sig andY, are not appro-
priate bases because the generated proof obligationsysfigal deadlock. This leaves
us with two choices, namely, statemeitsandY;. We aim to modify the program so

the base statement establishes the stable gyare.,wpy.Y,.sy holds for the basg
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Now, condition (7.30) is proved by the possible valueg &forj € {2, 3}, the proof
is trivial becauséwpy.Y;.(pcy < j V sy) | holds. Forj = 4, we have[l A pcx =5 A
pcy = 4 = Sy V by |, which holds due to the enforced assertigrat X; (see casg¢= 5

in the correctness proof @7.25)x). Forj = 5, we obtain:
O(pcx =5 A poy =5 = Sy V Sx). (7.31)

Of the newly introduced condition$7.28)x suggests that, be established just before
Ny. Due to the loop, we chooskto be the base af«, PCy), and hence we use Lem-

ma 6.54 (statement replacement (2)) to repMcby 3: by, by, Sx -[Sy := trug].

Init: bx, by, sx, Sy -[pcx, poy := 0, 0]

Procesx Processf
! #
0:  {?bx} Xncs; 0:  {?by} Y.ncs;
21 by, by, sx, sy -[skip] 2 bx, by, sx, sy -[skip]
5. {7bx} 5. {?by}
(if sy — by, by -[skip] fi) ; (if sx — by, by -[skip] fi) ;
4: {7 4: {7y}
(if by — skip fi) ; (if bx — skip fi)
1: {?GCpcy & Dy V by} Xcs; |1: {?GCpcx ¢ Dx V bx}Y.cs;
3: by, by, sy [sx :=true] 3: by, by,sx[sy := true]
] ]

?(7.9)y: O(pex € Dy A by = poy € Cy)
(7.24)x: O(pcy € Ny = by)
2(7.27)x: O(pex =4 A pey =4 = bx V by)
?(7.29)y: sty.sy
?(7.28)x: O(pex =5 A poy € Ny = sy)
?2(7.31)x: O(pex =5 A poy =5 =Sy V )
Safe O(pcx € Cx V poy € Cy)
TA (Vi B(pox = i = tx. X))
CAx: pcx € Dx ~ pcx ¢ Dx
Livex: (Vi.pcy—ny POx =1~ pCx # 1)
(7.8)x: O(pex & Cx V pey € Cy V by)

Due to(7.29)y, correctness of assertions and invariants involgngndsy are more

difficult to establish, hence we reason about them first.
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Correctness of—sx at X;. Introducingsy := falseto establish-sx at X, conflicts with
(7.29)x becausesy will not be stable in process. Instead, we use the guard X, i.e.,

Sy to establish correctness by introducing the following ecéd invariant
O(sy = —Sx).

Note that strengthening(sy = —sx) to O(sy < —sx) allows us to discharg€r.31)x,

and hence we introduce:

O(sy < —Sx). (7.32)

Global correctness ofisg at X, is now guaranteed due {@.32) and (7.29)x. Local

correctness ofis at X, is guaranteed by the guard X{.

Correctness of(7.31)x  Using Lemma 6.39 (property strengthening) and (7.32), in-

variant(7.31)x may be removed from consideration.

Correctness of (7.32). This holds in procesy if every statement ir¥ either does
not modify bothsy andsy, or each assignmesf := true is coupled with assignment
sy := false and vice versa. Hence we use Lemma 6.54 (statement reat€n)) to
replaceYs with statemens: by, by -[sy, s := true, fals€], Lemma 6.58 (frame reduction)
to removesy andsy from the frame ofY,, and use Lemma 6.55 (initialisation replace-

ment) to replacénit with

bx, by -[pcx, oy := 0,0; sx :€ B; sy := (]

Correctness 0of7.32) in processX is established via symmetric changes.

Correctness of (7.28)x. Becausesy is stable in proces¥, (7.28)x may be verified
by case analysis on the statements that establish the dateasf(7.28)x. Correctness
against statementsit andY; (which establislpcy € Ny) are trivial because they falsify
pcx = 5 and establistsy, respectively. However, the proof for statemet(which

establishepck = 5) is non-trivial. StatemenX, cannot establisb, due to(7.29)x and
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(7.32), i.e.,sy cannot be established by proce§sand furthermors, has been removed

from the frame ofX,. Enforced invarian{7.28)x is logically equivalent to

O(poy € Ny A =Sy = pox # 5).

Hence we look to modify proces&so that ifpcy € Ny holds, procesX cannot establish
pcx = 5. To facilitate this, we usé7.24)x (which ensure®y holds whenpcy € Ny),
and introduce guarehby just beforeX;. Becausedy establishes local correctness of
pcy € Dy V by atX;, we are presented with an opportunity to introduce an nockohg
“if-then-else” statement that establish@sx = 1 if by holds, andocy = 5 if —by holds.
However,byx will need to be modified befor¥; for local correctness diy at Xs. Thus,
we first use Theorem 6.62 (statement introduction) to intoed: by := true just before
Xs5. Then, using Theorem 6.47 (data refinement with enforceariamts), we introduce

the conditional described above using:

rep = if pcx =7 A PP — (pcx := 6 LI pck :==1); |PP|
| pox # 7 — skip fi

wherePP s the conjunction of all enforced invariants arfl {'1S,” is the angelicchoice
betweenS, andS,. For any predicat® and procesp, [Wp,.(S U S,).P = wp,.S§.P Vv
wp,.S.P]. The only non-trivial proof requirements are main stateiménand new

statemenk;. We have the following calculation fof;.

rep; |PP; ax.2; |PP| C [PPJ; cx.2; |PPJ; rep
Eax2Ccx.2; |pox=T7]; (pox :=6Lpok:=1)
& {Lemma 6.15 (monotonicityfa; blia; cC a; (buc)}
pcx := 6 C (pCx := 7; pox :=6) U (pcx :=T7; pcx := 1)
& true

We use the following result of Celiku and von Wright [CvWO08} fany predicateR
andQ.

P=wp(SUS$).Q=(Frps (PAR=wWpS.Q) A (PA-R=wpS$.Q))
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TakingS, andS; to bepcy := 6 andpcy := 1, respectivelyP to betrue, and instantiating

Rto —by, we obtain the following calculation for any predic&e

wp.(pox := 6 LI pcx := 1).
6).
6

Q
Q) A (by = wp.(pcx :=1).Q)
I]by — PCx = 1 fl)Q

= (—by = wp.(pcx :
= wp.(if =by — pox :=

Thus, the refinement proof for new statemgpproceeds as follows:

rep C |PP|; cx.7; |PPJ; rep
& |pex =7 APPJ; (pox :=6Upex :=1); |PP| C [PP]; cx.7; |PP]
& {Lemma 6.15 (monotonicity) calculation above

Lpcx = 7J; ([=bv); pox := 611 [by]; pox :=1) T cx.7
£ true

The proofs of the exit condition and internal convergendi®doin a similar manner to

Theorem 6.62 (statement introduction).
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Init: by, by -[pcx, poy := 0, 0; sx :€ B; sy := =]

Procesx Processf
| |
0:  {?bx}Xncs; 0: {?by}Y.ncs;
2: by, by -[skip] ; 2: by, by -[skip] ;
7. if (=by — skip) 7 if (—bx — skip)
6 by := true; 6: by := true;
5: {?GChby} 5: {7GCby}
(if sy — by, by -[skip] fi) ; (if sx — bx, by -[skip] fi) ;
4: {—sx}(if by — skip fi) 4: {—sy}(if bx — skip fi)
| (by — skip) fi ; | (bx — skip) fi ;
1:  {?GCpcy ¢ Dy V by} Xcs; 1:  {?GCpcx ¢ Dx V bx} Y.cs;
3: by, by -[sx, sy := true, falsq 3: by, by [sy,sx := true, falsg
] ]

‘?(79)Y D(pr € Dx A by = pcy ¢ Cy)

?(7.24))(1 D(pCY € Ny = by)

?2(7.27)x: O(pcx =4 A poy =4 = by V by)

Safe O(pcx € Cx V pey € Cy)

TA (Vine B(pox =1 = tx. X))

CAx: Pcx € Dy ~ pcx Q Dy

Livex: (Vi.pcy—ny PCx =1~ pCx # 1)
(7.8))(1 D(pr ¢ Cx V pcy ¢ Cy V by)

(7.29)y: sty.sy

(7.28)x: O(pcx =5 A poy € Ny = sy)

(7.32): O(sy & —sx)

We may now address correctness of enforced assertions \uthimts that involve

by andby.

Correctness of(7.9)x. We may establisti7.9)x in processX by using Lemma 6.58
(frame reduction) to removiey from the frame of each statementXn In processy,
any statement that can establishalso establishesc, ¢ Cy, and thus, the proofs are
trivial. For the statementg that may establispcy € Cy, if j € Cy, the proof is trivial

because; does not modifyoy, while casg = 1 can be satisfied by introducing enforced

assertion-by at;.
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Correctness of—-by at X;. Local correctness holds if we introduce enforced assertion
—by at X4 andX;, while global correctness holds becalrggs not modified by process
Y.

Global correctness of—by at X, and X;. This holds becausby is not modified by

processy.

Global correctness ofby at X5 and X,. This holds becausby is not modified by

processy.

Global correctness ofpcy ¢ Dy V by at X;. Correctness must be verified agaist

andY;. We use the recently introduced assertidoy at X; as follows.

pcx = 1A (pCY g Dy Vv by) N (pr =1= _|bx) = Wpy.Y4.(pCY g Dy Vv by)
= PC = 1A _|bx A PCy = 4 N bx = (pCY = 1)(pCY ¢ Dy V by)
= false= (poy := 1).(pcy € Dy V by)

= true
AgainstY; we have.

pcx = 1 A (pey € Dy V by) A (pox = 1 = —bx) = wpy.Y7.(poy & Dy V by)
= (pox = 1 A =bx A poy =7 A —bx = (poy :=6).(poy € Dy V by)) A
(pex = 1 A =bx A pey =7 A bx = (poy :=1).(pcy € Dy V by))
= (pcx = 1 A —bx A poy = 7 = true) A
(false= (poy := 1).(pcy € Dy V by))
t

rue

Correctness of(7.27)x. Because-by and—by have been enforced &} andX,, re-

spectively,(7.27)x may be strengthened to

O(pox # 4 V poy # 4). (7.33)



7.4 DEKKER’S ALGORITHM 209

Correctness of(7.24)x. This holds for procesX because it does not modify,. In

processy, the statements that falsify, also falsifypc, € Ny. CaseY, may be proved

using assertioby at Y.

Init: by, by -[pcx, poy := 0,0; sx :€ B; sx := —s«]

Procesx Processf
! !
0: {?LChx}Xncs; 0: {?LChy}Y.ncs;
2 bx-[skip] ; 2: by -[skip] ;
7. {?LC—by} 7. {?LC—by}
if (—by — skip) if (—bx — skip)
6: by := true; 6: by := true;
5: {bx} 5 {by}
(if sx — by -[skip] fi) ; (if sx — by -[skip] fi) ;
4: {=sx}{7LC —bx} 4: {=sy}{?LC —by}
(if by — skip fi) (if by — skip fi)
[ (by — skip) fi; | (bx — skip) fi;
1 {por & Dy V by}{—bx} L {pox & Dx V bx{-bv}
Xcs; Y.cs;
3: bx-[sx, Sy := true, falsq 3: by -[sy, sx := true, falsg
] ]

?(7.33): O(pcx # 4V poy # 4)

Safe O(pex € Cx V pey € Cy)
TAC (Ving B(pox =i = tx. X))

CAx: PCx € Dy ~~ PCx Q/ Dx

Livex: (Vipcy—ng PCx =1~ pox # i)
(7.8)x: O(pex € Cx V pey € Cy V by)
(7.9 v. D(pr € Dx A by = pcy ¢ Cy)

)
)
(7.24)x: O(pcy € Ny = by)
(7.29)y: sty.sy

)

(7.28)x: O(pcx =5 A poy € Ny = sy)

(7.32): O(sy & )

Correctness ofby at X,. Local correctness holds if we use Lemma 6.55 (initialigatio

replacement) to repladait by

pCx, PGy, by, by := 0,0, true true; s¢ :€ B; sy := —sy.
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Becauseby is at the top of the loop, the statement at the end of the loogt ralgo
establishby, and hence we use Corollary 6.66 (assignment introductmimtroduce

statemeng: by := truejust afterXs.

Local correctness of-by at X;. Due to assertioby at X5, to establish-byx, we must
falsify by just beforeX, via a new statement. Introducing a new statendeby; := false
is however, problematic becauXg;, Y; C Y4; Xy will not hold, i.e., the new statement
does not commute with guarded statemgst|. We solve this by strengthenirn@.33)

to
O(pox ¢ {4,9} V por & {4,9}). (7.34)

Thus, if procesX is executingXy, processy cannot be executing executg or Yy, and
vice versa. That is, due to (7.34), we may use Corollary 6a86ignment introduction)

to introduce statemenq, to the program.

Correctness of(7.34). This holds becausg(pcx € {4,9} = —sx) holds and further-
more, statement; (which establishegcy = 9) has guarghcy = 5 A s¢. The correctness

proof against statemei, (which establishepc, = 4) is trivial.

7.4.2 Discussion

The algorithm we have derived is not quite Dekker’s alganitlas presented by Feijen
and van Gasteren [FvG99]. Using a conditional, their atbariallows one to bypass
lines statementXs, X5, X9, and X, if sy already holds. A second difference is that
the multiple assignment af; is replaced by := Y, and the guardy replaced by

v = Y, which is necessary to ensure the single variable assignraguirement. We
may easily transform our program to the version presente@dijgn and van Gasteren
[FVG99, pg 90] using Definition 6.22 (data refinement), hogvewe omit details of this

transformation because it is a simple refinement exercise.

A derivation of Dekker’s algorithm using the theory from @ker 4 but without using
the techniques in Section 4.4 appears in [GD05]. Comparédtive derivation in this
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thesis, the presentation in [GDO05] is more complicated. \Akehdevoted less time to
proving progress which has allowed us to consider the opt@diand more easily and

each program modification is motivated more formally.

Francez [Fra86] presents a verification of the progresseotpmf Dekker’s algo-

rithm, however, as Feijen and van Gasteren point out:

In [Fra86], one can find a formal treatment of Dekker’s altfon, which

convincingly reveals that something very complicated imgon. [FvG99,

pg91]

Stolen [St@90] presents a derivation of Dekker’s algoriihma compositional setting,
however, although the specification is clearly that of a twocpss mutual exclusion
algorithm, it is unclear how the code for Dekker’s algoritlegenerated. Furthermore,
the treatment of progress is not as rigorous as ours becaeisédgic only allows one

to consider absence of total deadlock formally.

7.5 Conclusions

We have illustrated uses of the the theory from Section 4dCGirapter 6 via derivations
of an initialisation protocol and three mutual exclusiogaaithms. From the derivations,
we learn that under weak fairness, stable guards form anrtamopart of individual

progress. We have also demonstrated the effectiveness téchniques for non-stable

guards.

We have shown how proofs of progress may be simplified by ushgction. Much
of the effort in an inductive proof lies in finding an appraie well-founded relation,
where we are required to find some metric on the state, aorlati this metric, and an
appropriate base of the relation. For our simpler prograinesmetric used has been just
the program counters, but as seen in Section 5.3 and Sectidh & is possible to use
much more complicated metrics. We apply several heurigtiodentify an appropriate

base for the well-founded relation.
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Using our lemmas and heuristics from Section 4.4, we hava bbk to consider
each option at hand more easily. This has had the benefit gnabw derive a number
of variants of each algorithm [DMO08]. Reducing the comptigxif a proof has a direct
impact on the derivations. Focus is shifted away from perfog the proof to actual
program development. Furthermore, each modification t@tbgram is justified using
the theorems and lemmas in Chapter 6, which ensures tranemefnt of the original
program. Thus, we can be sure that the final program is an mgi&ation of the origi-
nal. Notable in our refinement is that fact that thp statement is usually hidden away
within our lemmas. That is we are generally not required tiinéeep explicitly. This
is in contrast to methods such as Event-B, action system3 bBAdvhere a refinement
relation between the abstract and concrete programs mdsffined (or derived) at each
refinement step. However, in contrast to Event-B [EBO8jef does need to be explic-
itly defined, we do not have techniques for deriving the regfiiep from failed proof

obligations.

Apart from a progress logic, Chandy and Misra [CM88] alsospra techniques
for progress-based construction of concurrent programgh their method, one per-
forms refinements on the original specification until a levetletail is reached where
the UNITY program is ‘obvious’. Hence derivations stay witlthe realms of specifi-
cations until the final step, where the specification is ti@nsed to a UNITY program.
However, as each specification consists of a list of invésiand leads-to assertions, it
is hard to judge the overall structure of the program. Furttoee, it is difficult to decide

when there is enough detail in the specification to trangiébea program.

Lamport [LamO02] describes refinement techniques using th& férmalism, how-
ever, due to the difficulty of temporal logic reasoning, does describe how progress

properties are preserved. Lamport justifies this by clagntimat progress is insignificant:

And remember that liveness properties are likely to be thstlanportant
part of your specification. You will probably not lose muclhydu simply

omit them.[LamO02, pg88]

We clearly do not agree with this statement.
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Init: pcx, pey, bx, by := 0,0, true, true; sx :€ B; sy := =S¢

ProcesxX Process
# !
0:  {bx}Xncs; 0: {by}Y.ncs;
2: by :=false; 2: by :=false;
7 {-bx} 70 {-by}
if (—by — skip) if (—bx — skip)
6: by := true; 6: by := true;
5: {bx}(if sy — skip fi) ; |5: {by}(if sx — skip fi) ;
9: by := false; 9: by := false;
4: {=sx}{-bx} 4: {=sv}{-bv}
(if by — skip fi) (if bx — skip fi)
| (by — skip) fi; | (bx — skip) fi;
1:  {pcv ¢ Dy V by}{—bx} 1:  {pcx € Dx V bx}{—-by}
Xcs; Y.cs;
3:  sx,Sy :=true, false; 3:  Sy,Sx = true, false;
8: by :=true 8: by:=true
] ]

Safe O(pex & Cx V poy € Cy)
TAC (Ving O(pex =1 = tx.X))
CAx: pcx € Dx ~ pcx ¢ Dx
Livex: (Vipcy—ny PCx =1~ pox # i)
(7.8)x: O(pex € Cx V pey € Cy V by)
(7.9)y: O(pex € Dx A by = poy € Cy)
(7.24)x: O(pcy € Ny = by)
(7.29)y: sty.sy
(7.28)x: O(pcx =5 A poy € Ny = sy)
O(sy & —)
O(pox & {4,9} V poy ¢ {4,9})

FIGURE 7.7: Dekker’s algorithm
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Conclusion

We have presented techniques for verifying and derivingoment programs based on
both safety and progress requirements. Our derivation adstBhow that the verify-
while-develop paradigm is a viable alternative to an optrnidevelopment followed
by a post-hoc verification. While program development ¢jetakes more time, each
modification step is well motivated by properties that thegpam code does not satisfy,
leading to simpler programs. Furthermore, our rules aré shat each modification is

guaranteed to be a refinement of the original specification.

In Chapter 2, we described our programming framework, wisdbased on Dijk-
stra’s Guarded Command Language. This language provid#sations of constructs
that can be found in any imperative programming language dssignments, sequential
composition, conditionals and loops. We have also provitmtdeterministic assign-

ment and frames, which are constructs used specificallydovations. Our choice of

215
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programming language is an important one because it alle&saudevelop programs in
a model that is much closer to an actual implementation, intrast to frameworks such
as action systems, UNITY, TLA, I-O automata, etc. Thus, we aehieve a higher de-

gree of confidence in the accuracy of the translation from dehi@ an implementation.

Applicability of the Guarded Command Language to concuyes achieved by
extending the language with atomicity brackets (whichvedldarger sections of code
be declared atomic), and labels (which together with progcaunters facilitates rea-
soning about the control state of the program). We providedgerational semantics
for this extended language, which formalises the executiodel and allows concepts
such as divergence, non-termination and abortion to beemalty defined. We are able
to distinguish the subtleties between divergence, nanit&tion and abortion for both

unlabelled and labelled statements.

Dongol and Goldson [DGO06] describe how proofs of safety aratyi@ss may be
performed directly in this extended framework by combinihg theories of Owicki-
Gries [OG76] with leads-to from UNITY [CM88]. Using our o@ional semantics, we
generalised these results and incorporated linear ternljpgia (LTL) [MP92] directly
into the framework, which allows more general temporal prtips to be expressed (and
hence proved). Furthermore, the logic is presented usiogram traces, which guar-
antees its soundness. Invariants (for proving safety) eads-to (for proving progress)
are defined using LTL. We also re-proved some results froaslkéain UNITY [CM88]
using LTL, which generalises applicability of the theorenis Chapter 4, we proved
that the logic of Dongol and Goldson [DGO06] is sound by relgtiheir rules for proving

safety and progress to the LTL foundations.

In Chapter 3, we formalised the concepts of weak and strangefss in our frame-
work, which allows us to model assumptions on differing sither implementations.
We proved that every strongly fair trace is also weakly fafrich is a stronger result than
the relationship proved by Lamport [LamO02]. We formally defil blocking properties
(individual deadlock, total deadlock, individual progsestarvation, and livelock), as

well as non-blocking properties (wait-free, lock-freedatarvation-free), and provided
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a number of theorems that inter-relate these propertiesrutitfering fairness assump-
tions. We proved the non-blocking progress hierarchy, wait-free implies lock-free

(but not vice-versa), and lock-free implies obstructioeef(but not vice-versa). We in-
troduced the concept of a progress function that has allewed generalise our defini-
tions. As highlighted in Section 3.3.2, defining the differg/pes of progress properties
informally can result in ambiguities. In the context of kot programs, further sub-

tleties arise because properties like individual progesss starvation need to take the

fairness assumptions into account.

In Chapter 4, we explored for techniques proving safety amdness properties.
These techniques are calculational in the sense that waedieate transformers which
either show that the required properties hold, or producelitions that are necessary
for the required properties to hold. To this end, we definedvibakest liberal precon-
dition (wlp) and weakest preconditionvp) predicate transformers, which allow us to
prove partial and total correctness, respectively. Bdfhandwp are defined using our
operational semantics foundations which ensures themdsoess, then transformation

rules for our language of unlabelled and labelled statesnnat provided as lemmas.

Safety and progress properties are proved using invarautseads-to, respectively,
however, because invariants and leads-to have been defamegl LTL, direct proofs
of these conditions are difficult. We follow the calculat@bnheory of Feijen and van
Gasteren [FvG99] to prove invariants. We formalised thecepis of local and global
correctness, and showed how annotations and invariantatarerelated using labels
and program counters. Techniques for proving leads-torundek fairness are adapted
from UNITY [CM88], but presented using the calculationglstof Dongol and Goldson
[DGO6]. (Unlike invariants, correctness of a leads-to @rty depends on the fairness
assumptions at hand.) In addition, we have presented agilmoél techniques for prov-
ing leads-to under minimal progress and strong fairnessalllyj several theorems that
use induction on a well-founded relation to simplify proafisleads-to are provided.
These theorems extend those of Dongol and Mooij [DM06, DM#8allowing multi-
ple (more than two) processes as well as the underlyinggssrassumptions to be taken

into account. Furthermore, the theorems are structuredmaraner that suits program
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derivation.

Chapter 5, consisted of case studies where we verified megreperties of a num-
ber of example programs. We showed that the initialisatiobgeol satisfies individual
progress, and therefore terminates under both weak faiares$ minimal progress. We
verified then-process bakery algorithm as a more significant case stualy.omplete
the proof of the non-blocking progress property hierarevgyverified a program that is

lock-free, but not wait-free, and a program that is obstomefree, but not lock-free.

In the derivation techniques of Feijen/van Gasteren andgbooij, the abstract
specification consists of some incomplete code and ‘queri@gerties’ that are required
to hold of the final program [FvG99, DM06, DMO08]. Statementsl goroperties are
introduced, removed, modified in a systematic manner umibgram whose code sat-
isfies the initial queried properties is obtained. Howeweiike formalisms such as
action systems, Event-B, TLA, etc, there is no formal relaship between the abstract
specification and the implementation. Hence, the final giogmay generate traces that

the abstract program did not allow.

In Chapter 6, we presented a theory of refinement for the aksivs of Feijen/van
Gasteren and Dongol/Mooij [DHQ09]. A challenge was to alloaremental modification
of statements and properties (like in the derivation metbfoBeijen/van Gasteren and
Dongol/Mooij), yet ensure trace refinement (i.e., each nlagse trace of the modified
program is an observable trace of the abstract specifigafidrus, the refinement rules
need to be as unrestrictive as possible in terms of the dlil@yaodifications. Because
programs are modified in several small incremental stepgcansl challenge was to
ensure that each modification generated as few proof oldigats possible. That is,
unlike frameworks such as action systems, Event-B, and WMd#ich require a refine-
ment relation to be explicitly defined and proved, we aim tegkthe refinement relation

hidden in the modification lemmas.

To formalise refinement of queried properties, we introduttee novel concept of
an enforced property, which may be any LTL formula. Thus ss€d properties are
applicable to both safety and progress based derivationoréed properties restrict

the set of traces of a program so that traces that do notys#iisienforced property are
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discarded. Several lemmas for introducing and manipuatimforced properties in a

manner that ensures trace refinement have been provided.

Proving trace refinement when program statements are nubdgidifficult, and
hence we introduced data refinement to our framework. Weegktvat data refinement
is sound by relating it to trace refinement. Fresh privateabdes that, for example, ac-
commodate additional points of synchronisation, are duo@d using program frames
[Mor90], and several lemmas for modifying framed staters@né provided. A theorem
for introducing statements that modify private variableslso provided. Because this
creates a new point of interference, commutativity betwitbemew statement and state-
ments that modify observable variables in all other proeessust be verified, which is
a potentially expensive calculation. We thus provided lesmnd techniques that help
reduce the cost of introducing new statements. This is tefiieao our derivations where

commutativity proofs are seldom required.

In Chapter 7, we presented derivations of a number of progtardemonstrate our
techniques. Namely, we derived the initialisation protaowd three mutual exclusion
programs: the safe sluice algorithm (which satisfies sdfatynot progress), Peterson’s
algorithm (which satisfies safety and progress under weakefss), and Dekker’s al-
gorithm (which satisfies safety and progress under weakdag, but has additional
restrictions on the number of shared variables that can besaed in a single atomic

step).

We feel that the techniques developed in this thesis forre@pstg stone to the wider
task of a practical development approach for concurrergraras. The following may

be regarded as future work.

e In Chapter 7 we have derived programs consisting of only tvazgsses using

the verification techniques in Section 4.4. However, beedhs logic is general

enough to deal witm-process programs, we could also consider derivations of

n-process programs. We expect that such derivations will tieaienge without

tool support.

e As highlighted in Chapter 5, proving lock-freedom is cornated because we
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must take the state of more than one process into account. aweihtroduced
techniques to reduce the complexity lock-freedom proots{@bb, CD0O7, CD09],
where we have proved that the Treiber stack [Tre86], the BetiScott queue
[MS96], and a bounded array queue [CGO05] are lock free. Thies# techniques
could be combined with the derivation theory in this thesi®tdevelop techniques
for the derivation of lock-free programs. We also hope t@pgtour verification
techniques to more general lock-free programs, for ingtahose with two or

more nested loops.

We are currently working on applying the idea of enforcemer@hapter 6 other
frameworks such as action systems and event-B. We are gidoriexg enforced

properties in compositional frameworks such as rely-guae
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